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Abstract. We address the problem of analyzing programs such as J2ME
midlets for mobile devices, where a central correctness requirement
concerns confidentiality of data that the user wants to keep secret. Ex-
isting software model checking tools analyze individual program execu-
tions, and are not applicable to checking confidentiality properties that
require reasoning about equivalence among executions. We develop an
automated analysis technique for such properties. We show that both
over- and under- approximation is needed for sound analysis. Given a
program and a confidentiality requirement, our technique produces a
formula that is satisfiable if the requirement holds. We evaluate the ap-
proach by analyzing bytecode of a set of Java (J2ME) methods.

1 Introduction

Security properties based on information flow, such as confidentiality, are increas-
ingly becoming a concern in software development [28]. This motivates research
in verification techniques for establishing that a given program preserves confi-
dentiality of sensitive information. The main problem we consider is how to prove
that an attacker cannot infer user-specified secrets based on observed behavior.
A specific application context consists of Java midlets. Midlets are third-party
programs designed to enhance features of mobile devices. These programs can
access data on the phone and send messages. The security requirement is that
the information is revealed only selectively, and in particular, no confidential
information is leaked.

Informally, a property f over the program variables is said to be confidential
if the adversary cannot infer the truth of f based on the observed behavior of
the program at runtime and the knowledge of the source code of the program.
Formal definition of confidentiality (as well as of other information flow prop-
erties) relies on a notion of observational equivalence of traces. More precisely,
a property f is conditionally confidential with respect to a property g if for ev-
ery execution r for which the property g holds, there exists another execution
r′ such that r and r′ disagree on the truth of f , but are equivalent according
to the observer. Two executions are equivalent to the observer, if they produce
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the same sequence of observations (observations can be, for example, outputs or
inputs of the program).

Software model checkers have made great progress in recent years, having
become efficient and used in practice. Existing tools (such as SLAM [7] and
BLAST [20]) are designed for checking linear-time properties of programs, and
are based on abstraction, symbolic state-space traversal, and counter-example
guided abstraction refinement. These tools cannot be used for verifying confiden-
tiality properties. The reasons are two-fold. First, conditional confidentiality is
not a property of a single execution, and in fact, it is not specifiable in μ-calculus,
which is more expressive than the specification languages of these tools. Second,
the definition of conditional confidentiality involves both universal and existen-
tial quantifiers. Therefore, abstraction based solely on over-approximation (or
solely on under-approximation) is not sufficient for checking conditional confi-
dentiality. More precisely, let us consider two programs P1 and P2, such that P1
is an over-approximation of P2, that is, the set of executions of P2 is included in
the set of executions of P1. The fact that conditional confidentiality holds for P1
does not imply that conditional confidentiality holds for P2 (and vice-versa).

We focus on methods written in a subset of Java that contains booleans,
integers, on which we allow linear arithmetic, as well as data from an unbounded
domain D equipped with only equality tests. Furthermore, the programs can
have arrays, which are a priori unbounded in length and whose elements are
from D. For example, in the application domain of interest, J2ME midlets, the
data domain D models strings (representing names or phone numbers), and the
array might contain a phone book or a list of events. Our technique currently
does not handle method calls. (In practice, midlet methods call methods from
a small set of APIs. The effect of these methods has been hard-coded into the
tool. In a future version, we plan to allow specification of these methods using
pre-/post-conditions.)

Our method proceeds in two steps. First, we compute a formula ϕ that is valid
if the conditional confidentiality requirement holds. In order to do so, we need to
consider both an over- and an under-approximation of reachable states for every
program location. We use user-specified invariants for over-approximation. In all
the examples we considered, the invariants that were used are simple enough,
and could have been discovered by existing techniques for automatic invariant
generation [17,24,27]. The under-approximation is specified by a bound on the
number of loop iterations and a bound on the size of the array.

Second, we develop a method for deciding the validity of the obtained formu-
las, which involves both universal and existential quantifiers. We leverage the
restrictions on the program expressions, as well as the specific form of the ob-
tained formulas, to devise a decision method based on using an existing SMT
solver. The restriction on the program expressions used is the fact that the do-
main D (over which the universal quantification takes place) has only equality
tests. Therefore given a formula ϕ, it is possible to produce an equivalent for-
mula ϕ′ where the universal quantification takes place over a bounded domain.
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As ϕ′ can then be seen as a boolean combination of existential formulas with no
free variables, its validity can be decided using an SMT solver.

We confirmed feasibility of our solution by checking conditional confidentiality
for methods from J2ME midlets and the core Java library. Our tool ConAn uses
WALA [2] library to process Java bytecode and the Yices [14] solver to decide
the resulting formulas. The running times for the methods we analyzed were all
under two seconds. The size of the methods we analyzed was small, with the
largest one having little over 100 lines. We show that this is typical for midlets
by presenting statistics for lines of code per method for 20 most downloaded
open source midlets.

2 Motivating Example

J2ME midlets have legitimate reasons to access data on the mobile device (such
as the list of contacts or a phone book), and a legitimate reason to send out-
going messages. Therefore an access control mechanism that would prevent the
programs from performing either of these tasks would be too restrictive. Thus
there is a question of how to ensure that a given (possibly malicious) midlet does
not leak confidential information. For instance, the recently released report [23]
describes several attack vectors through which a malicious midlet can stealthily
release private data through connections such as text messages, emails, or http
requests. In this application context, we focus on verification, rather than bug
finding, as the goal is to certify that the midlet does not leak a secret, and thus
is safe to run on a mobile device.

The J2ME security model uses the concept of protection domains (see MIDP
specification [3]). A protection domain is associated with permissions for security-
sensitive APIs. Midlets that need more privileges have to be either signed by a
certificate from a trusted certification authority (CA) or registered with the man-
ufacturer of the device; depending on the policy of the vendor. The source code of
the midlets is not analyzed, the registration serves only to enable the possibility of
tracking the harmful midlets and their authors. A verification tool would be very
useful in this context, because it could be used for guaranteeing that registered
midlets do not leak confidential information.

We will use a simplified version of the EventSharingMidlet from a J2ME
manual [1] as an example. The example uses a security-sensitive PIM1 API. It
allows accessing the native data (e.g. the phone book) of the phone. For this
API, a confidentiality requirement might be that phone numbers in the phone
book should not be leaked. EventSharingMidlet allows the user to plan an event
and send information about it to contacts in her phone book. The core of the
midlet is in Figure 1. The property to be kept secret for the example is whether
a particular string, say “555-55” is in the phone book. Let us denote it by secret .
We want to verify that the attacker cannot infer whether the secret holds or not
based on her knowledge of the program and observation of the outputs (in this
case, the variable message). Note that the outgoing message does depend on the
1 Personal information management. See https://java.sun.com/javame/index.jsp
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//get the phone number

number = phoneBook.

elementAt(selected);

//test if the number is valid

if ((number == null)

‖ (number == "")) {
//output error

} else {
String message = inputMessage();

//send a message to the receiver

sendMessage(number,message);

}
}

Fig. 1. EventSharingMidlet

...

if ((number == null)

‖ (number == "")) {
//output error

} else {
if (contains(phoneBook,‘‘555-55’’)) {

String message = inputMessage();

//send a message to the receiver

sendMessage(number,message);

}
}

Fig. 2. EventSharingMidlet (malicious
version)

variable phoneBook (via the control-flow dependency). However, in this case, the
answer is that the attacker cannot infer whether the secret holds or not. Now let
us consider the case when midlet is malicious as in the Figure 2. The attacker
inserted a test on whether the number “555-55” is in the phone book. Now if a
message (any message) is sent, the attacker can infer that the secret holds.

3 Related Work

Model-checking for confidentiality. The definition of conditional confiden-
tiality we use in this work is similar to notions in [18] based on logics of knowl-
edge with perfect recall. Verification of this type confidentiality properties has
been studied recently [4,30] for finite state systems. The problem of checking
confidentiality is shown to be PSPACE-complete. We focus here on extending
this line of research to verification of confidentiality for software. Traditional
software verification is not directly applicable to this problem. The reason is
that conditional confidentiality cannot be expressed in branching-time temporal
logics, such as μ-calculus [5]. Furthermore, abstractions based solely on over-
approximations or solely on under-approximations are not sufficient for checking
conditional confidentiality. Frameworks for three-valued abstractions of modal
transition systems ([13],[15]) combine over- and under-approximations, but the
logics studied in this context (μ-calculus or less expressive logics) cannot express
the conditional confidentiality requirement.

Opacity. The definition of conditional confidentiality we use is related to [8].
The main difference is that the notion of confidentiality we consider here is con-
ditional (with the secret specified by a property f and the condition specified
by a property g), whereas opacity is not. If we set g to be true, then the confi-
dentiality notion used in this paper corresponds exactly to the property f being
final-opaque under a static observation function, in the terminology of [8].
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Language-based security. Noninterference is a security property often used
to ensure confidentiality. Informally, it can be described as follows: “if two input
states share the same values of low variables then the behaviors of the program
executed from these states are indistinguishable by the observer”. See [25] for a
survey of the research on noninterference and [22] for a Java-based programming
language with a type systems that supports information flow control based on
noninterference.

Noninterference is too strong for the specification of confidentiality for the ex-
ample in Figure 1. (The reason is, briefly, that the variable number depends on
the variable message via control flow.) The definition of confidentiality we pre-
sented in this paper can be seen as a relaxation of noninterference. It is relaxed
by allowing the user to specify which predicate(s) should stay secret; noninter-
ference requires that all properties of high variables stay secret. It is well-known
that the noninterference requirement needs to be relaxed in various contexts.
See [26] for a survey of methods for defining such relaxations via declassifica-
tion. In this context, the main benefit of our approach is automation, as our
method allows verification of existing programs without requiring annotations
by the programmer.

It is known that possibilistic noninterference is not preserved when non-
deterministic choices are eliminated. This is the case also for conditional confi-
dentiality. (It is also the reason why considering only over-approximation is not
sufficient for sound analysis.)

Static analysis. Program analysis for (variants of) noninterference has been
examined in literature. The approaches that have been considered include slic-
ing [29] or using a logic for information flow [6]. These methods conservatively
approximate noninterference, and thus would not certify valid midlets. It is pos-
sible to relax these requirements by using e.g. escape-hatch expressions [6]. It
would be interesting to see if these ideas can be used to develop a specification-
driven automated method for checking confidentiality. Decidability of some of
the variants of noninterference for while-programs is shown in [11]. Dam and
Giambagi [12] introduce a notion of admissible information flow, allowing a finer
grained control. Admissible information flow is a relaxation of noninterference,
where the programmer can specify which specific data dependencies are allowed.
The information required from the programmer are quite complex however (a
set of relabellings) and it is not straightforward to see how this method can be
automated.

Probabilistic notions of confidentiality. We have presented a possibilistic
definition of confidentiality. Probabilistic definitions have been examined in the
literature (see e.g. [16,31]). We chose a possibilistic one for two reasons: first, a
probabilistic definition could not be applied without making (artificial) assump-
tions about the probability distribution on inputs, and second, common midlets
do not use randomization (so a security measure might be to reject programs that
use randomization). However, there are settings where a probabilistic definitions
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would be appropriate, and the question on how to extend the analysis method to
a probabilistic definition is left for future work.

4 Formalizing Confidentiality

We consider methods in a subset of Java that contains boolean variables, integer
variables, data variables, and array variables. Data variables are variables rang-
ing over an infinite domain D equipped with equality. The domain D models
any domain, but we restrict the programs to use only equality tests on data
variables. The length of the arrays is unbounded, and their elements come from
the domain D.

Integer expressions IE are defined by the following grammar:

IE ::= s | i | IE OP IE,

where s is a constant, i is a variable, and OP is in +,−. Data expressions DE are
of the form

DE :: = c | v | A[IE],

where c is a constant, v is a data variable and A is an array. Note that there is no
arithmetic on data expressions. The only way to access the data domain is through
equality tests. Boolean expressions are defined by the following grammar:

B :: = true | b | B and B | not B
| IE = IE | IE < IE
| DE = DE

We do not restrict the intra-procedural control structures. We do not allow pro-
cedure calls. In what follows, the programs are assumed to be annotated with
assignments to a history variable hist. The variable is of type list and it stores
the sequence that the observer can see. The first command of a program initial-
izes hist to the empty list. Where the other annotations with an assignment to
hist are placed depends on a particular security model. If an observer can see
every change of the value of a variable, then every command that can change
the value of the variable is annotated with an assignment to hist. If an observer
sees only values sent via a particular API, the calls to this API are annotated.
For example, a call of a method send(d) which sends a message (visible to the
observer) containing the value of variable d, is annotated by a command that
appends the value of d to the variable hist (hist := append(hist,d)). Let
us emphasize that this annotation is not program-specific, and can be done au-
tomatically (and is done automatically by our tool). In what follows, we will
assume that hist contains of a list of values from the data domain D. (The
definition and the analysis can be extended to capture also boolean values being
visible.)

We will now formalize what an observer can infer based on his or her observa-
tions. Let us fix a program P . A state of P is a valuation of its variables. Given
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result = -1; i = 0;

while (i < n) {
if (A[i]==key) { result=A[i]; }
i++;

}
hist := append(hist,result);

Fig. 3. Program ArraySearch

a program location l, the set Rl denotes a set of states that are reachable at l.
An observation is a sequence of data values di, where di is in D. It represents
what the observer sees during an execution of the program. Let e be the exit
location of the program (we assume there is a unique exit location). Let secret
and cond be predicates over states of the program.

Definition 1. Let h be an observation, let s0, s1, s2 be states. The predicate
secret is confidential w.r.t. the condition cond if and only if

∀h(∃s0 : s0 ∈ Re ∧ s0 |= cond ∧ s0[hist] = h) ⇒
(∃s1 : s1 ∈ Re ∧ s1 |= secret ∧ s1[hist] = h∧
∃s2 : s2 ∈ Re ∧ s2 �|= secret ∧ s2[hist] = h)

(1)

We rephrase the definition in order to convey the intuition behind it. We say that
a program execution (a sequence of states) produces a observation h if s[hist] =
h, where s is the last state of the execution. Two executions are equivalent iff
they produce the same observation. This notion of equivalence captures when
the observer cannot distinguish between two executions. Let us call a observation
h feasible, if there exists a a state s in Re, such that s[hist] = h. Intuitively,
the definition says that for all feasible observations h, if there exists a execution
for which the condition cond holds, then there exists an equivalent execution
for which secret holds, and an equivalent execution for which ¬secret holds.
Therefore the definition ensures that the observer cannot infer whether secret
holds or not.

Remark. This definition can be expressed in the logic CTL≈ introduced in [4]
for specification of information flow properties.

Example. Let us consider the program ArraySearch in Figure 3 to illustrate
the definition and to show why we need the conditional definition. The program
takes an array and an integer key as an input. It scans through the array to
find if there is an element whose value is equal to key, and if so, returns this
element. The secret we would like to protect is whether the array contains 7. We
therefore define secret to be ∃i : A[i] = 7. Now let us consider the observations
the observer sees. Such a observation contains a single number, the final value
of result. If the observer sees the value 7, he or she can conclude that 7 is in
the array. Therefore confidentiality does not hold. However, the program should
preserve confidentiality as long as key is not equal to 7. Thus we set cond to be
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key �= 7. In this case, it is easy to see that confidentiality is preserved. Intuitively,
by observing the final value of the result, the observer only knows that this
value is in the array. If the size of the array is at least 2, the observer does not
know whether 7 is or is not in the array. As the size of the array is unknown to
the observer, we can conclude that the confidentiality of the secret is preserved.
(Note however, that if the observer knows that the size of the array is 1, the
confidentiality of secret does not hold. If the final value of result is not equal
to −1, and is not equal to 7, then the observer can infer that the array does not
contain 7.)

5 Analysis of Programs for Conditional Confidentiality

We consider Definition 1 of conditional confidentiality and we show that one
needs to compute both over- and under- approximation. If only one of these
techniques is used, it is not possible to get a sound approximation of the con-
fidentiality property. The reason is, at a high level, that the definition involves
both universal and existential quantification over the set of executions of the
program. More precisely, recall that as explained in Section 3, the definition re-
quires that for all feasible observations h, if there exists a execution t1 for which
the condition cond holds, then there exists an equivalent execution t2 for which
secret holds, and an equivalent execution t3 for which ¬secret holds. If we use
only over-approximation, that is, a technique that makes the set of executions
larger, we might find an execution t2 or t3 as required, even though it is not
an execution of the original program. Such analysis is thus unsound. If we use
under-approximation, some feasible observations might become infeasible. An
analysis on the under-approximation would tell us nothing about such observa-
tions. It is not difficult to construct a concrete example where reasoning only
about the under-approximation would be unsound.

We thus need to consider over- and under-approximations of sets Re. Let R+
e

be an over-approximation of Re, that is, Re ⊆ R+
e . Similarly, let R−

e be an
under-approximation R−

e , that is, Re ⊇ R−
e .

Using the sets R+
e and R−

e , we can approximate conditional confidentiality as
follows:

∀h(∃s0 : s0 ∈ R+
e ∧ s0 |= cond ∧ s0[hist] = h) ⇒

(∃s1 : s1 ∈ R−
e ∧ s1 |= secret ∧ s1[hist] = h ∧

∃s2 : s2 ∈ R−
e ∧ s2 �|= secret ∧ s2[hist] = h)

(2)

The formula (2) soundly approximates conditional confidentiality, as expressed
by the following lemma.

Lemma 1. If the formula (2) holds, then secret is confidential w.r.t cond.

We will now show how, given a program and the predicates secret and cond
specified as logical formulae, we can derive a logical formula expressing the for-
mula (2). We will use the following logic.
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Logic L. The formulas of L will use boolean, integer, data and array variables
(similarly to the expressions defined in Section 4). The definition of integer and
data expressions will be the same as well. The grammar defining the boolean
formulas is:

BL ::= true | b | BL | BL | not BL
| IE = IE | IE < IE | DE = DE
| ∃ b: BL | ∃ i: BL | ∃ v: BL

The difference between the formulas in L and the boolean expressions in the
programs we consider is that in L we allow quantification in the logic.

Weakest precondition. We will need the notion of the weakest precondition com-
putation (see e.g. [32]). Given a program P and a formula ϕ, WP(P, ϕ) is the
weakest formula that guarantees that if P terminates, it terminates in a state in
which F holds. The main property we require for the logic is that it should be
closed under the weakest precondition of loop-free programs, that is, for any L-
formula ϕ and any loop-free program P, WP(P, ϕ) is in L. Given the restrictions
on expressions in the language, it is easy to show that this requirement holds.

Over-approximation R+
e . Let us consider the antecedent of the formula (2),

i.e. (∃s0 : s0 ∈ R+
e ∧ s0 |= cond ∧ s0[hist] = h). We need to obtain an L

formula characterizing this requirement, given that cond is an L formula. Given
an L formula ψ that characterizes R+

e , we obtain the desired characterization
as ϕ+ ≡ ∃pv : ψ ∧ cond ∧ hist = h. Note that the free formulas in ψ and cond
range over the program variables, and the notation ∃pv : F (for a formula F ) is
a shorthand for saying that all program variables are existentially quantified.

The formula ψ that characterizes the set of reachable states at a program
location can be either provided by the user or computed by standard methods of
abstract interpretation [9], using a standard abstract domain (e.g. octagons [21],
polyhedra [10]) Recently, such techniques have been extended for discovering
disjunctive invariants (see [17,24,27]). These latter techniques would be needed
to discover the invariants needed for the examples we present in Section 6.

Under-approximation R−
e . The under-approximation is obtained by loop un-

rolling. More precisely, all loops are unrolled a fixed number of times (k) and
the program is thus transformed to a loop-free program P ′. For example, each oc-
currence of while B { C } in a program is replaced by k conditional statements
if B then C; followed by assume (not B). The command assume B ensures
that B holds. If it is not the case, the execution fails. Let P’ be a program ob-
tained by this transformation. Let R′

e be the set of reachable states obtained for
P’. It is straightforward to prove that R′

e ⊆ Re.
We are interested in characterizing the requirement (from the consequent of

formula (2)): ∃s1 : s1 ∈ R−
e ∧ s1 |= secret ∧ s1[hist] = h by a L-formula ϕ−

1 .
It is computed using the weakest precondition computation on the program P ′

as follows: ϕ−
1 ≡ ∃pv : WP(P ′, hist = h ∧ secret). Similarly, ϕ−

2 is defined as
∃pv : WP(P ′, hist = h ∧ ¬secret).
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Computing confidentiality. We can now check if confidentiality holds using the
following formula:

∀h :(∃pv : ψ ∧ cond ∧ hist = h) ⇒
(∃pv : WP(P ′, hist = h ∧ secret)∧
∃pv : WP(P ′, hist = h ∧ ¬secret))

(3)

As formulas (2) and (3) are equivalent, we can use Lemma 1 to prove the fol-
lowing:

Lemma 2. If the formula (3) holds, then secret is confidential w.r.t cond.

5.1 Deciding Validity of the Confidentiality Formula

In this section, we describe a method for deciding the confidentiality formula (3).
The method is based on satisfiability modulo theories (SMT) solving.

Restrictions on cond and secret. First we identify some restrictions on the pred-
icates cond and secret . The restriction on cond is that we will consider only
existential formulas. The predicate secret appears in the formula (3) also under
negation, therefore we restrict it not to use quantification. Note that for some
examples, the property secretcontains a quantification on the array indices. This
is the case for the ArraySearch example discussed in Section 3. In such cases,
the under-approximation uses also a bound on the size of the array, thus making
the quantification to be effectively over a bounded set.

The L-formula (3) has one quantifier alternation (taking into account the
restrictions above). Here we show how such a formula can be decided using an
SMT solver. In order to simplify the presentation, in this section we will suppose
the observation h in the confidentiality formula consists of only one data value
d (and not of a sequence of values from D). The results in this section, as well
as their proofs, can be easily extended to the general case.

Let us first suppose that we have an existential formula �(h) (in the logic L)
with one free data variable h. Let D be an infinite set, let C be the finite set of
values interpreting in D the constants that appear in �(h). For an element d of
D, we write d |= � if � holds when h is interpreted as d.

We show that the formula � cannot distinguish between two values d and d′,
if d and d′ are not in C.

Lemma 3. For all d, d′ ∈ D, if d /∈ C and d′ /∈ C, then d |= �↔ d′ |= �.

Intuitively, the lemma holds, because the formula � can only compare the value
of h to constants in C or to other existentially quantified data variables. The
proof proceeds by structural induction on the formula �.

Lemma 3 suggests a method for deciding whether ∀h : � holds: First, check
whether �(c) holds for all constants in C, and second, check whether �(c) and
for one value not in C. Note that as C is finite and D infinite, there must exist
an element of D not in C.

The following lemma shows that this method can be extended to the confi-
dentiality formula (3). Let C′ be C ∪ {d}, where d is in D, but not in C.
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Lemma 4. Let ψ be a formula: ∀h : ϕ0(h) → (ϕ1(h) ∧ ϕ2(h)), where ϕ0, ϕ1,
ϕ2 are existential formulas with one free data variable h. Then ψ is equivalent
to

∧
c∈C′ ψc, where ψc is ϕ0(c) → (ϕ1(c) ∧ ϕ2(c)).

The proof uses Lemma 3 for all of ϕ0, ϕ1 and ϕ2.
Let us now consider the resulting formula

∧
c∈C′ ψc. Each ψc has the form

ϕ0(c) → (ϕ1(c) ∧ ϕ2(c)), where ϕ0(c), ϕ1(c), and ϕ2(c) are existential formulas
without free variables. Therefore we can check satisfiability of each of these
formulas separately, and then combine the results appropriately (i.e. if ϕ0(c) is
satisfiable, then both ϕ1(c) and ϕ2(c) have to be satisfiable).

We have thus leveraged the fact that the only operation on the data domain
is equality to devise a decision method based on SMT checking for the confiden-
tiality formula (2).

Example. Let us consider the ArraySearch example presented in Section 3.
Recall that we considered the predicate secret to be ∃i : A[i] = 7 and the
condition cond to be key �= 7. Recall also that the observer might either see an
empty observation, or a observation containing a single number, the final value
of result.

For the over-approximation, we will need an invariant asserting that (result
= key or result = −1). The formula ϕ+ will thus be: ϕ+ ≡ ((result = −1) ∨
(result = key)) ∧ (key �= 7) ∧ result = h.

The under-approximation will be specified by a number of unrollings and the
size of the array. We choose 2 in both cases. We then compute ϕ−

1 using the
weakest precondition computation ∃s1 : WP(P, hist = h ∧ ∃i : A[i] = 7) and
ϕ−

2 as ∃s2 : WP(P, hist = h ∧ ¬∃i : A[i] = 7).
The formula characterizing confidentiality becomes:

∀h :(∃s : ((result = −1) ∨ (result = key)) ∧ (result = h) ∧ (key �= 7)) ⇒
(ϕ−

1 ∧ ϕ−
2 )

The formulas contains two constants from the data domain −1 (appeared in
the program) and the value 7 (appeared in cond and secret). We also need to
consider one value that is different for these constants. We can pick for example
the value 1. For −1 (1) the formula says that if the observer sees the value, he
or she cannot infer whether 7 is in the array and are easily proven. For 7, the
antecedent of the formula is false (as the purpose of the condition was to exclude
7 from consideration), thus the formula is proven.

6 Experiments

We have performed experiments in order to confirm that the proposed method
is feasible in the sense that the formulas produced can be decided by existing
tools in reasonable time. The experiments were performed on methods of J2ME
classes and classes from the core Java library on a computer with a 2.8Ghz
processor and 2GB of RAM.
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Fig. 4. Toolchain

We have implemented a prototype tool called ConAn (for CONfidentiality
ANalysis). It takes as input a program in Java bytecode, a secret, a condition,
and parameters specifying the over- and under- approximation to be used.

The complete toolchain is shown in Figure 4. The WALA [2] library is used to
process the bytecode. The ConAn tool then performs the analysis on an interme-
diate representation called WALA IR. The IR represents a method’s instructions
in a language close to JVM bytecode, but in an SSA-based language which elimi-
nates the stack abstraction. The IR organizes instructions in a control-flow graph
of basic blocks. The tool analyzes a fragment of the IR subject to the same re-
strictions on expressions as described in Section 3. The methods call methods
from a small set of APIs such as the PIM API mentioned in Section 2. The ef-
fect of these methods has been hard-coded into the tool. In a future version, we
plan to allow specification of these methods using pre-/post-conditions. Further-
more, the programs we examined use iterators (with operations such as hasNext
and Next to iterate over data structures). The effect of these methods was also
hard-coded using iteration over arrays.

As shown in Figure 4, the ConAn tool takes as input a specification for the
over-approximation (in the form of the invariant) and the specification of the
under-approximation (in the form of the number of loop unrollings to consider
and a bound on the size of the array). The tool Yices [14] is used for deciding
satisfiability of the resulting formulas.

We briefly describe the examples we considered and report on the performance
of the tool. Table 1 contains, for each example, the number of lines of code, the
running time of the tool, and the result, i.e. whether the formula was satisfiable
(and confidentiality preserved) or unsatisfiable (i.e. no conclusion possible). Note
that the running times presented in the table do not include the running time
of the translation from bytecode to the WALA IR format. It includes only the
running time of the analysis in ConAn, and the time taken by the Yices tool to
decide the satisfiability of the formulas.

In all cases the secret is a fact about the array. We used the predicate
∃i : A[i] = 7 as the secret. The condition cond is specified for each exam-
ple separately. The over-approximation was specified via an invariant, and the
under-approximation was specified via the number of loop unrollings (as shown
in Table 1) and the bound on the size of the array (chosen to be 2 in all of
the examples). The observation visible to the observer is defined by either the
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Table 1. Experimental evaluation

project / # of lines running
class Method Name in Java unroll time (s) result

1 Vector elementAt 6 1 0.18 valid

2 EventSharing SendEvent 122 2 1.83 valid

3 EventSharing SendEvent (bug) 126 2 1.80 unsat

4 find 9 1 0.31 unsat

5 find 9 2 0.34 valid

6 Funambol/Contact getContact 13 2 0.32 valid

7 Blackchat/ICQContact getContactByReference 23 2 0.24 valid

8 password check 9 2 0.22 valid

message(s) the program send out, or the values the functions return. The latter
is useful for modular verification of programs that access a data structure via a
call to the analyzed functions and subsequently send messages depending on the
returned value.

Example 1 is from the class Vector, whose method elementAt is similar to
ArrayAccess example from Section 4. Examples 2 and 3 are from a J2ME ex-
ample called EventSharingMidlet. This is the example described in Section 2. We
considered both the correct version and a version with an artificially introduced
bug as in Example 2. This example is taken from [1].

Examples 4 and 5 are versions of the ArraySearch example from Section 4.
For Example 4, we used only one unrolling of the loop. The tool did not prove
that the secret is not leaked. Increasing the number of unrollings to two (Example
5) helped; the confidentiality was proved in this case.

Example 6 from the class Contact found in the Funambol library scans the
phonebook obtained via a call to PIM API to find an element corresponding to
a key. Example 7 is similar to Example 6. Example 8 is a version of the classical
password checking example - an array is scanned and if the name/password pair
matches, the function returns 1. The results show that no password is leaked.
Example 8 is taken from [19].

Discussion. All Javamethods we considered are small in size. For these programs,
the running times were in tens of seconds. The experiments succeeded in showing
that our approach is feasible for relatively short Java methods. We argue that this
shows that our methods is suitable for the intended application, certification of
J2ME midlets. Firstly, J2ME midlets are rather small in size. We surveyed 20 of
the most popular2 midlet applications. We used the tool LOCC3 to calculate for
each of this midlets the average number Na as well as maximal number Nm of
lines of code per method. Over all of these programs, the average of Na numbers
was 15, the maximum of the Na numbers was 25. The average of theNm numbers
was 206, the maximum of the Nm numbers was 857. These data confirm that the

2 The criterion was the number of downloads from sourceforge.net
3 http://csdl.ics.hawaii.edu/Tools/LOCC/
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size of methods in J2ME midlets is small, and our methods are directly applicable
to average-sized method. Secondly, for each midlet we reported on in Table 1 we
analyzed the methods that are key from the point of view of preserving secrecy,
i.e. the methods that access the data structure for which the secret should hold,
or methods that send messages. Therefore we believe that a pre-processing phase
using program slicing followed by our techniques would enable our tool to analyze
most of the methods of midlets.

7 Conclusions

We have presented a verification technique and a tool for checking confidential-
ity for programs. The proposed verification method analyzes a program (from a
syntactically restricted class) to produce logical formula that characterizes the
confidentiality requirement. The resulting formulas can be discharged by using
existing SMT tools. We demonstrated the feasibility of our approach on illustra-
tive Java methods from the intended application domain, J2ME midlets.

We have shown that both over- and under- approximation are necessary for
sound analysis of confidentiality requirements. Therefore an interesting question
for future research is how to develop a counter-example guided abstraction refine-
ment for this problem. Furthermore, there are other specific application domains
where confidentiality specification is useful. An example of such an application
are implementations of payment protocols.
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