Skip to main content

Reasoning on the Evaluation of Wildfires Risk Using the Receiver Operating Characteristic Curve and MODIS Images

  • Conference paper
  • 893 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5601))

Abstract

This paper presents a method to evaluate the wildfires risk using the Receiver Operating Characteristic (ROC) curve and Terra moderate resolution imaging spectroradiometer (MODIS) images. To evaluate the wildfires risk fuel moisture content (FMC) was used, the relationship between satellite images and field collected FMC data was based on two methodologies; empirical relations and statistical models based on simulated reflectances derived from radiative transfer models (RTM). Both models were applied to the same validation data set to compare their performance. FMC of grassland and shrublands were estimated using a 5-year time series (2001-2005) of Terra moderate resolution imaging spectroradiometer (MODIS) images. The simulated reflectances were based on the leaf level PROSPECT coupled with the canopy level SAILH RTM. The simulated spectra were generated for grasslands and shrublands according to their biophysical parameters traits and FMC range. Both RTM-based models, empirical and statistical, offered similar accuracy with better determination coefficients for grasslands. In this work, we have evaluated the accuracy of (MODIS) images to discriminate between situations of high and low fire risk based on the FMC, by using the Receiver Operating Characteristic (ROC) curve. Our results show that none of the MODIS bands have a good discriminatory capacity (0.9984) when used separately, but the joint information provided by them offer very small misclassification errors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowyer, P., Danson, F.M.: Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level. Remote Sens. Environ. 92, 297–308 (2004)

    Article  Google Scholar 

  2. Burgan, R.E., Rothermel, R.C.: BEHAVE: Fire Behavior Prediction and Fuel Modeling System. Fuel Subsystem. GTR INT-167, USDA Forest Service, Ogden, Utah (1984)

    Google Scholar 

  3. Camia, A., Bovio, G., Aguado, I., Stach, N.: Meteorological fire danger indices and remote sensing. In: Chuvieco, E. (ed.) Remote Sensing of Large Wildfires in the European Mediterranean Basin, pp. 39–59. Springer, Berlin (1999)

    Chapter  Google Scholar 

  4. Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S., Grégoire, J.M.: Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ. 77, 22–33 (2001)

    Article  Google Scholar 

  5. Ceccato, P., Gobron, N., Flasse, S., Pinty, B., Tarantola, S.: Designing a spectral index to estimate vegetation water content from remote sensing data. Part 1, Theoretical approach. Remote Sens. Environ. 82, 188–197 (2002)

    Article  Google Scholar 

  6. Chuvieco, E., Aguado, I., Cocero, D., Riaño, D.: Design of an empirical index to estimate fuel moisture content from NOAA-AVHRR analysis in forest fire danger studies. Int. J. Remote Sens. 24(8), 1621–1637 (2003a)

    Article  Google Scholar 

  7. Combal, B., Baret, F., Weiss, M., Trubuil, A., Mace, D., Pragne’re, A., Myneni, R., Knyazikhin, Y., Wang, L.: Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem. Remote Sens. Environ. 84, 1–15 (2002)

    Article  Google Scholar 

  8. R Development Core Team: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2008) ISBN 3-900051-07-0, http://www.R-project.org

  9. Fourty, T., Baret, F.: Vegetation water and dry matter contents estimated from top-of-the atmosphere reflectance data: a simulation study. Remote Sens. Environ. 61, 34–45 (1997)

    Article  Google Scholar 

  10. Jacquemoud, S., Baret, F.: PROSPECT: a model of leaf optical properties spectra. Remote Sens. Environ. 34, 75–91 (1990)

    Article  Google Scholar 

  11. Knyazikhin, Y., et al.: MODIS leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) product (MOD15). Algorithm Theoretical Basis Document (1999), http://eospso.gsfc.nasa.gov/atbd/modistables.html

  12. Lawson, B.D., Hawkes, B.C.: Field evaluation of moisture content model for medium-sized logging slash. In: Proceedings of the 10th Conference on Fire and Forest Meteotology, Ottawa, Canada, pp. 247–257 (1989)

    Google Scholar 

  13. Nuñez Olivera, E.: Ecología del jaral de Cistus ladanifer, Universidad de Extremadura (1988)

    Google Scholar 

  14. Roberts, D.A., Peterson, S., Dennison, P.E., Sweeney, S., Rechel, J.: Evaluation of airborne visible/infrared imaging spectrometer (AVIRIS) and moderate resolution imaging spectrometer (MODIS) measures of live fuel moisture and fuel condition in a shrubland ecosystem in southern California. J. Geophy. Res. 111, G04S02 (2006), doi:10.1029/2005JG000113

    Google Scholar 

  15. Usero, R., Zarco, U.: Estimación del contenido de agua del combustible mediante el uso de redes neuronales artificiales CEDI Granada (2005)

    Google Scholar 

  16. Ustin, S.L., Jacquemoud, S., Zarco-Tejada, P.J., Asner, G.: Remote Sensing of Environmental Processes: State of the Science and New Directions. In: Ustin, S.L. (ed.) Manual of Remote Sensing. Remote Sensing for Natural Resource Management and Environmental Monitoring, New York, vol. 4, pp. 679–730 (2004)

    Google Scholar 

  17. Vermote, E.F., Vermeulen, A.: Atmospheric correction algorithm: spectral reflectances (MOD09). NASA (1999)

    Google Scholar 

  18. Viegas, D.X., Piñol, J., Viegas, M.T., Ogaya, R.: Estimating ive fine fuels moisture content using meteorologically-based indices. Int. J. Wildland Fire 10, 223–240 (2001)

    Article  Google Scholar 

  19. Wellburn, A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144, 307–313 (1994)

    Article  Google Scholar 

  20. Wood, S.: Generalized Additive Models. Chapman and Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  21. Wood, S.: Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statististical Association 99, 549–673 (2004)

    Google Scholar 

  22. Wood, S.: Thin plate regression splines. Journal of the Royal Statistical Society: Series B 65, 95–114 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yebra, M., Chuvieco, R.: Estimation of live fuel moisture content from MODIS images for fire risk assessment agricultural and forest meteorology, vol. 148, pp. 523–536. Elsevier, Amsterdam (2008)

    Google Scholar 

  24. Yebra, M., de Santis, A., Chuvieco, E.: Estimación del peligro de incendios a partir de teledetección y variables meteorológicas: variación temporal del contenido de humedad del combustible. Recursos Rurais 1, 9–19 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Usero, L., Rodriguez-Alvarez, M.X. (2009). Reasoning on the Evaluation of Wildfires Risk Using the Receiver Operating Characteristic Curve and MODIS Images. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Methods and Models in Artificial and Natural Computation. A Homage to Professor Mira’s Scientific Legacy. IWINAC 2009. Lecture Notes in Computer Science, vol 5601. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02264-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02264-7_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02263-0

  • Online ISBN: 978-3-642-02264-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics