Skip to main content

Total-Variation Based Piecewise Affine Regularization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

In this paper, we introduce a novel second-order regularizer, the Affine Total-Variation term, to capture the geometry of piecewise affine functions. The approach can be characterized by two convex decompositions of a given image into piecewise affine structure and texture and noise, respectively. A convergent multiplier-based method is presented for computing a global optimum by computationally cheap iterative steps. Experiments with images and vector fields validate our approach and illustrate the difference to classical TV denoising and decomposition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chan, T., Esedoglu, S., Park, F.E.: Image decomposition combining staicase reduction and texture extraction. J. Visual Communication and Image Representation 18(6), 468–486 (2007)

    Google Scholar 

  3. Chan, T., Marquina, A., Mulet, P.: Higher-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Danielsson, P.E., Lin, Q.: Efficient detection of second-degree variations in 2D and 3D images. J. Vis. Comm. Image Repr. 12, 255–305 (2001)

    Article  Google Scholar 

  5. Didas, S., Setzer, S., Steidl, G.: Combined ℓ2 data and gradient fitting in conjunction with ℓ1 regularization. Advances in Computational Mathematics 30(1), 79–99 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer, Heidelberg (1986)

    Book  MATH  Google Scholar 

  7. Goldstein, D., Osher, S.: The Split Bregman method for l 1 regularized problems. UCLA CAM Report (2008)

    Google Scholar 

  8. Hintermüller, W., Kunisch, K.: Total bounded variation regularization as a bilaterally constraint optimization problem. SIAM J. Appl. Math. 64(4), 1311–1333 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hyman, J.M., Shashkov, M.: Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Comput. Math. Appl. 33(4), 81–104 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hyman, J.M., Shashkov, M.: Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids. Appl. Numer. Math. 25(4), 413–442 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Processing 12(12), 1579–1590 (2003)

    Article  MATH  Google Scholar 

  12. Lysaker, M., Tai, X.C.: Iterative image restoration combining total variation minimization and a second-order functional. International Journal of Computer Vision 66(1), 5–18 (2006)

    Article  MATH  Google Scholar 

  13. Rahman, T., Tai, X.C., Osher, S.J.: A TV-stokes denoising algorithm. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 473–483. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)

    MathSciNet  MATH  Google Scholar 

  15. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Scherzer, O.: Denoising with higher order derivatives of bounded variation and an application to parameter estimation. Computing 60, 1–27 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Setzer, S.: Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage. In: Lie, K.A., Lysaker, M., Morken, K., Tai, X.C. (eds.) Scale Space and Variational Methods. LNCS. Springer, Heidelberg (2009)

    Google Scholar 

  18. Trobin, W., Pock, T., Cremers, D., Bischof, H.: An unbiased second-order prior for high-accuracy motion estimation. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 296–405. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  20. You, Y.L., Kaveh, M.: Fourth-order partial differential equations for noise removal. IEEE Trans. Image Processing 9(10), 1723–1730 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yuan, J., Schnörr, C., Steidl, G.: Simultaneous optical flow estimation and decomposition. SIAM J. Scientific Computing 29(6), 2283–2304 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yuan, J., Schnörr, C., Memin, E.: Discrete orthogonal decomposition and variational fluid flow estimation. J. Math. Imaging and Vision 28(1), 67–80 (2007)

    Article  MathSciNet  Google Scholar 

  23. Yuan, J., Schnörr, C., Steidl, G.: Convex hodge decomposition and regularization of image flows. J. Math. Imag. Vision 33(2), 169–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yuan, J., Schnörr, C., Steidl, G. (2009). Total-Variation Based Piecewise Affine Regularization. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics