
A New Message Recognition Protocol with

Self-recoverability for Ad Hoc Pervasive
Networks

Ian Goldberg1, Atefeh Mashatan2, and Douglas R. Stinson1

1 David R. Cheriton School of Computer Science, University of Waterloo
Waterloo, Ontario Canada N2L 3G1

http://crysp.uwaterloo.ca/
2 The Security and Cryptography Laboratory (LASEC), EPFL

CH-1015 Lausanne, Switzerland
http://lasecwww.epfl.ch/

Abstract. We examine the problem of message recognition by review-
ing the definitions and the security model in the literature. In particular,
we examine the Jane Doe protocol, which was proposed by Lucks et
al., more closely and note its inability to recover in case of a certain
adversarial disruption. Our paper saves this well-studied protocol from
its unrecoverable state when such adversarial disruption occurs. We pro-
pose a new message recognition protocol, which is based on the Jane
Doe protocol, and incorporate the resynchronization technique within
the protocol itself. That is, without having to provide a separate resyn-
chronization procedure, we overcome the recoverability problem of the
Jane Doe protocol. Moreover, we enumerate all possible attacks against
the new protocol and show that none of the attacks can occur. We fur-
ther prove the security of the new protocol and its ability to self-recover
once the disruption has stopped.

Keywords: Cryptographic Protocols, Authentication, Recognition, Self-
Recoverability, Pervasive Networks, Ad Hoc Networks.

1 Introduction

Entity recognition is a weaker security notion than entity authentication; it refers
to the process where two parties meet initially and one party can be assured
in future conversations that it is communicating with the same second party.
There is an analogous correspondence between message recognition and message
authentication.

There have been several recent papers on designing protocols where the source
of trust is a narrow-band authenticated channel; see for example [4], [7], [9], [10],
and [11]. In particular, there has been recent interest in designing recognition
protocols using this communication model. This problem has been considered
in a context where we are dealing with low-computational power devices which
cannot handle public-key computations and where no pre-deployed shared secret

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 219–237, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://crysp.uwaterloo.ca/
http://lasecwww.epfl.ch/

220 I. Goldberg, A. Mashatan, and D.R. Stinson

exists. On the other hand, the devices have access to a narrow-band authenti-
cated channel at the initialization step and are later placed in a constrained,
possibly hostile, insecure environment.

Lucks et al. [4] motivated this model with the following example. Let Alice
and Bob be two strangers who meet in a party for the first time. They leave
the party after making a bet. Some days later, it turns out that Alice wins the
bet. Afterward, Bob receives a message claiming to be sent from Alice. The
message includes a bank account number and asks Bob to deposit Alice’s prize
to that bank account. Bob wants to be assured that this message is indeed
sent from the entity who introduced herself as “Alice” in the party. In other
words, Bob needs to recognize “Alice”, whoever she is, or a message that is sent
from her.

Now consider Alice and Bob to be two small devices who “meet” in a some-
what secure environment that allows them to send authenticated, but not con-
fidential, messages. They are later placed in a hostile environment where Alice
wants Bob to recognize the messages sent from her to Bob. An adversary, Eve,
is present all along. When Alice and Bob first meet, Eve can read the authenti-
cated messages, but cannot change them. Later, when Alice and Bob are placed
in a hostile environment, Eve can not only read, but also modify messages. She
can also insert her own messages claiming to be from either party. Eve’s goal
is to make Bob accept messages from her as sent from Alice, where Alice has
never, or at least not recently, sent those messages.

Since message recognition is weaker than message authentication, every mes-
sage authentication protocol trivially provides message recognition. Moreover,
message recognition can be achieved using public-key, when public-key compu-
tations are feasible, or secret-key cryptography, when pre-deployed authentic
information is available. However, in some scenarios, public-key computations
may be too costly and there may be no secure channel where the secret keys can
be transmitted confidentially.

One can ask what security goals can be achieved in such a constrained model?
There are claims in the literature, see [11] for example, suggesting that achiev-
ing message authentication is not possible in such an environment. Hence, they
pursue the weaker security of message recognition.

We examine the Jane Doe message recognition protocol proposed by Lucks
et al. in more detail and note that in case of a particular adversarial disruption,
this protocol fails to recover. In other words, the adversary can trap one party
in a state that he or she will no longer accept legitimate messages that were sent
by the other party. This inability to recover was noted previously in [8], where
it was fixed by calling upon a separate procedure called a “resynchronization
protocol”. Here, we propose a new message recognition protocol that is able to
recover without having to call a separate resynchronization protocol. That is,
our new protocol has the advantage of self-recoverability. (The fact that self-
recoverability is built into our protocol means that the parties involved do not
have to negotiate when to resynchronize. This makes the whole system simpler

A New Message Recognition Protocol with Self-recoverability 221

and more robust.) We also formally prove that our new protocol is secure and
fully recovers once the disruptions have stopped.

The rest of the paper is organized as follows. Section 2 is devoted to examining
previous recognition protocols and noting their shortcomings. In Section 3, we
describe a new message recognition protocol. Finally, Section 4 is devoted to
proving the security and recoverability of the protocol.

2 Previous Recognition Protocols

In this section, we briefly review the existing message recognition protocols and
discuss their usability in the context of networks with low-computational power
devices that also have low communication bandwidth.

There are two communication channels considered in the setting of recognition
protocols: an insecure broadband channel, denoted by →, and an authenticated
non-confidential narrow-band channel denoted by ⇒. The broadband channel is
available all the time and the narrow-band channel is only accessible once, for
the initial session between two users.

The Guy Fawkes protocol was proposed by Anderson et al. [1]. There are two
variants of this protocol suggested and a one-way hash function is deployed in
both variants. In the first variant, random codewords are chosen in each ses-
sion and are refreshed each time a message is authenticated. Alice commits to
the message and the codewords and then publishes the commitment in a public
directory which provides time-stamping services. Later, she reveals the commit-
ted values to prove that she is the same party who was involved in previous
sessions. However, assuming the existence of a trusted party which provides
time-stamping services is not realistic in most ad hoc network scenarios. The
second variant does not require any interaction with a time-stamping provider
and instead requires interaction of the authenticating party with the verifying
party. The initialization phase of this protocol does not assume any authenti-
cated channel; however, it requires digital signatures for authenticating the first
blocks and codewords. This may not be suitable in ad hoc networks and, in par-
ticular, in low-power environments. Moreover, for a message to be authenticated
in session i, users need to commit to it in the previous session. In the context
of message recognition, this means that users are engaged in two sessions of this
protocol to authenticate a single message, which may not be desirable.

The Remote User Authentication Protocol is an entity recognition protocol
that was introduced by Mitchell [9]. In this protocol, a message authentication
code (MAC) is used to prove that a user is the same entity involved in previous
sessions. The protocol can be adapted to perform message recognition as well;
however, this is not discussed in the paper. The setup phase of this protocol
requires that t MAC values be sent over the authenticated channel. This may
be costly since authenticated channels are usually of low bandwidth. Further,
the “cut-and-choose” procedure in each round involves sending 2t MAC values
and r secret keys. In order for the protocol to be secure, it is suggested that
t ≥ 35 and r ≈ t/2. Hence, the amount of computation and communication

222 I. Goldberg, A. Mashatan, and D.R. Stinson

here is large compared to other protocols that are providing entity or message
recognition and it may not be suitable for settings with low-power devices.

Weimerskirch et al. [11] proposed a protocol called Zero Common-Knowledge
(ZCK). This protocol is the starting point of a series of recent publications; see
for example [3], [4], [5], [8], [6]. The ZCK protocol uses message authentication
codes (MACs) and hash chains of the form ai = H(ai−1) and bi = H(bi−1),
i = 1, . . . , n, as keys for the MACs. The length of the hash chain, n, is fixed at
the beginning and H is a one-way hash function.

Hammell et al. [3] implemented the ZCK protocol and provided measure-
ments and observations as a proof-of-concept. They investigated whether the
ZCK protocol suits devices with low computational power, low code space,
low communication bandwidth, low energy resources. They concluded that it
does exhibit these requirements, however, denial-of-service and memory com-
plexity are areas of concern and needed to be addressed or improved upon in the
future.

Hammell et al. did not investigate the security properties of the ZCK protocol,
but rather relied on the security proof that came along with it. However, Lucks
et al. [4] found a mistake in the security proof of this protocol and presented a
practical attack against it. Moreover, using the same idea of using values in a
hash chain as keys for MACs, they proposed a message recognition protocol that
guards against the found attack. We describe the protocol proposed by Lucks et
al. in more detail; it has been named the Jane Doe protocol [5].

A one-way hash function H : {0, 1}s → {0, 1}s and a message authentication
code MAC : {0, 1}s × {0, 1}∗ → {0, 1}c are considered as building blocks of
this protocol. Typical parameters are suggested to be s ≥ 80 and c ≥ 30. The
maximum number of messages to be authenticated, or the maximum number of
sessions, in the Jane Doe protocol is fixed to be n. Alice randomly chooses a0

and forms a hash chain of the form ai = H(ai−1), i = 1, . . . , n. Similarly, Bob
randomly chooses b0 and forms bi = H(bi−1), i = 1, . . . , n. Alice and Bob will
respectively use ai and bi as keys for MAC values they compute in session i.

The initialization phase is constituted of Alice and Bob exchanging the values
of an and bn. In this phase of the execution, Eve is passive and the communication
is denoted by ⇒.

There will be n sessions of the protocol and we denote them in descending
order by n − 1, . . . , 0; this is because the values of the hash chains are going to
be revealed in this order. In each session i, Alice would like to authenticate a
message mi. She uses ai as the key for the MAC and sends the MAC value of
mi to Bob. Bob then authenticates himself to Alice by revealing bi. Once Alice
has verified bi, she reveals ai. Then ai allows Bob to verify Alice and mi. Once
the session is over, Alice and Bob “move down” in the hash chain and use ai−1

and bi−1 as keys for session i − 1.
Lucks et al. write accept-key(k) when a key k has been accepted, and commit-

message(m, i) when Alice commits herself to authenticate m in session i. Simi-
larly, accept-message(m, i) indicates that Bob has accepted m as sent from Alice
in session i. The formal description of the Jane Doe protocol is given next.

A New Message Recognition Protocol with Self-recoverability 223

Alice’s internal state in the Jane Doe protocol is as follows:

– i, the session counter
– bi+1, the most recently accepted value of Bob’s hash chain (hence accept-

key(bi+1) has occurred already)
– a one-bit flag, to distinguish the program states A0 and A1.

Similarly, Bob’s internal state is:

– i, the session counter
– ai+1, the most recently accepted value of Alice’s hash chain (hence accept-

key(ai+1) has occurred already)
– a one-bit flag, to distinguish the program states B0 and B1.

Session i of the Jane Doe protocol:

A0 (Alice’s initial program state) Obtain mi (possibly from Eve), then
Commit-message(mi, i).
Compute di = MACai(mi).
Send (di, mi); goto A1.

A1 Wait for a message b′ (supposedly from Bob), then
If H(b′) = bi+1 then
Let bi := b′, accept-key(bi) and send ai. Let i := i − 1 and goto A0
else goto A1.

B0 (Bob’s initial program state) Wait for a message (di, mi), then send bi and
goto B1.

B1 Wait for a message a′ (supposedly from Alice), then
If H(a′) = ai+1 then
Let ai := a′ and accept-key(ai).
If MACa′(mi) = di then
Accept mi as authentic in session i
(else do not accept any message for session i).
Let i := i − 1 and goto B0
else goto B1.

Lucks et al. present the Jane Doe protocol in an extended abstract [4], and
prove its security in the full version of the paper [5]. The Jane Doe protocol
is proved to be secure given that the preimage resistance, second preimage re-
sistance, and unforgeability properties, and their hash chain equivalents, hold.
These properties are described in Section 4.

Although the Jane Doe protocol is provably secure, it nonetheless falls short in
case of a certain adversarial disruption. In particular, Eve can easily manipulate
one party to move forward to the next session, while the other party is still in
the previous session. In such a case, a party could get trapped in a state and
never be able to finish execution of a session; as a result, he or she remains stuck
in that state forever.

224 I. Goldberg, A. Mashatan, and D.R. Stinson

Figure 1 illustrates a situation where Bob is trapped by Eve in program state
B1. The condition in program state B1 fails since ai+1 �= H(a′i). This will cause
Bob to stay in B1 waiting for a new ai. Now even if Alice sends him a legitimate
message mi, he will ignore it. Although this looks like a denial of service attack,
it is much stronger than that. Eve can go away and yet Alice and Bob are still
unable to communicate because Bob is trapped. The details of the disruption
are as follows.

Eve sends m′i and d′i to Bob and he will automatically decrement his index
to i while Alice does not. Eve chooses a′i such that ai+1 �= H(a′i), which will
make Bob wait for a new ai. While he is waiting for a new ai, he will not
accept a message of the form (mj , dj), for any j. Hence, even if Alice sends
him a legitimate message, he will ignore it. As a result, he is “trapped” in state
B1.

Lucks et al. suggest that Bob sends bi again after he has waited for too long
to receive the correct ai. However, when Alice has not initiated the session and
is not anticipating bi, it is not clear what she is supposed to do. Hence, this will
not help the protocol recover in case of this particular disruption.

Eve Bob

Choose random m′
i and d′

i.
m′

i, d′
i−−−−→ Move to the next time-frame upon reception of

the new message.
bi←−−−−

Choose a′
i such that ai+1 �= H(a′

i).
a′

i−−−−→ Since ai+1 �= H(a′
i), wait for a new ai.

Fig. 1. Eve “trapping” Bob in state B1

Eve can play the same trick with Alice and trap her in program state A1 for
an indeterminate period of time; Figure 2 illustrates this situation.

Alice Eve

Input (mi, Bob).
commit-message(mi, i).

Compute di = MACai
(mi).

mi, di−−−−→

Since bi+1 �= H(b′i), wait for a new bi.
b′i←−−−− Choose b′i such that bi+1 �= H(b′i).

Fig. 2. Eve “trapping” Alice in state A1

Once again, we note that this inability to recover is a problem since the adver-
sary does not need to continue her active involvement. She can leave the network
and yet Alice and Bob will no longer be able to have successful communication.
This renders the protocol unusable in practice.

A New Message Recognition Protocol with Self-recoverability 225

In the next section, we propose a message recognition protocol which attains
self-recoverability in case of the noted disruptions. It is in fact a highly nontrivial
task to modify the protocol to achieve self-recoverability. Because the entities
may be in additional “states”, depending on the information they possess and
its authenticity, the protocol is necessarily more complicated. As a consequence,
the security proof is more difficult.

3 A New Message Recognition Protocol

We describe the details of our proposed recognition protocol in this section,
while the security and recoverability analyses are postponed to the next session.
Although this protocol is based on the Jane Doe protocol proposed by Lucks
et al., the logic of the instructions of Alice and Bob has changed considerably.
Moreover, the information exchanged between Alice and Bob has changed as
well.

Note that each pair of users can execute this new protocol. However, as in
the Jane Doe protocol, there must be a different pair of hash chains for each
pair of communicating users. It is implicitly assumed that Alice and Bob are the
communicating parties in the rest of the paper.

The initialization phase and the setup of the hash chains are exactly as in
the Jane Doe protocol. The internal state of Alice includes (along with each
variable’s initial value):

– iA := n − 1: the position of Alice in her chain.
– iacceptA := n: the last index of Bob’s chain that was accepted by Alice.
– bA := bn: the last value of Bob’s chain that was accepted by Alice.
– M := Null: the input message to be authenticated in the current session.
– a one-bit flag, to distinguish the program states A0 and A1.

Similarly, Bob’s internal state is as follows:

– iB := n − 1: the position of Bob in his chain.
– iacceptB := n: the last index of Alice’s chain that was accepted by Bob.
– aB := an: the last value of Alice’s chain that was accepted by Bob.
– e′ := Null: the MAC value received in the current session, supposedly from

Alice.
– M ′ := Null: the message received in the current session, supposedly from

Alice.
– a one-trit flag, to distinguish the program states B0, B1, and B2.

Alice and Bob start in program states A0 and B0. We write commit-message
(M, iA) to indicate that Alice is committing herself to sending the message M
to Bob in session iA. We let T be the maximum amount of time Alice waits to
receive a response from Bob, and vice versa.

226 I. Goldberg, A. Mashatan, and D.R. Stinson

A0 is executed as follows:

If iA ≤ 0 then Abort.
Receive input (M) and commit-message(M, iA).
Compute eiA := MACaiA

(iA‖M).
Send [eiA , M] to Bob and goto A1.

B0 is executed as follows:

If iB ≤ 0 then Abort.
Wait to receive [e′, M ′], then goto B1.

B1 has the following description:

Send [iB, biB] to Alice and goto B2.

A1 is performed in the following manner:

Wait at most time T to receive [i′B, b′].
If [i′B, b′] is received, then

If i′B = iacceptA and bA = b′ (Bob has not received the last flow of the
previous session) then

Let N := Null.
Send [iacceptA, aiacceptA , N] and goto A0.

If i′B = iA and bA = H(b′) then (Alice and Bob seem to be synchronized.)
Let N := M .
Send [iA, aiA , N] to Bob.
Let iacceptA := i′B, bA := b′ and iA := iA − 1. (Alice updates her
state.)
goto A0.

else Resend [eiA , M] to Bob and goto A1.
If timeout then
Resend [eiA , M] to Bob and goto A1.

B2 is performed as follows:

Wait at most time T to receive [i′A, a′, N ′].
If [i′A, a′, N ′] is received, then

If i′A = iB and aB = H(a′) then (Alice and Bob seem to be synchro-
nized.)

If N ′ = M ′ and e′ = MACa′(i′A‖M ′) then
Accept(M ′, iB).

else Accept(Null).
Let iacceptB := i′A, aB := a′ and iB := iB − 1. (Bob updates his
state.)
goto B0.

else goto B1.
If timeout, then goto B1.

A New Message Recognition Protocol with Self-recoverability 227

Alice Bob
Internal state: iA, iacceptA, bA, M Internal state: iB , iacceptB , aB , e′, M′

A0: B0:
If iA ≤ 0 then Abort. If iB ≤ 0 then Abort.
Receive (M) and commit-message(M, iA).
Compute eiA

:= MACaiA
(iA‖M).

Send [eiA
, M].

eiA
, M

−−−−−−−−→ Receive [e′, M′].

A1: B1:

Receive [i′B, b′].
iB, biB←−−−−−−−− Send [iB, biB

].

If i′B = iacceptA and bA = b′ then
Let N := Null.
Send [iacceptA, aiacceptA

, N] and goto A0.

If i′B = iA and bA = H(b′) then
Let N := M. B2:

Send [iA, aiA
, N].

iA, aiA
, N

−−−−−−−−→ Receive [i′A, a′, N′].

Let iacceptA := i′B , bA := b′, iA := iA − 1. If i′A = iB and aB = H(a′) then
goto A0. If N′ = M′ and e′ = MAC

a′ (i′A‖M′) then
else Resend [eiA

, M] and goto A1. Accept(M′, iB).
else Accept(Null).
Let iacceptB := i′A, aB := a′, iB := iB − 1.
goto B0.

else goto B1.

Fig. 3. Our Proposed Message Recognition Protocol (Common Case)

Figure 3 illustrates the main steps of this protocol. For simplicity, the instruc-
tions on what to do in case one party does not receive any response from the
other party is not included in the figure.

If either Alice or Bob receives a message that they did not expect, they are
going to ignore it. For instance, while Alice is in state A1 and is waiting to
receive a message of the form (iB, b), she is going to ignore messages of the form
(M ′) that request for a new session and correspond to state A0. Analogously,
when Bob is in state B2, he is waiting for a message of type iA, a, N . He is
going to ignore messages of the form e′iA

, M ′ since they correspond to state B0.
In general, each party only acts on received messages that have the expected
structure in accordance to their current program state.

When Alice is waiting in state A1 for Bob to respond, she is set to wait for
time T . If she receives a message i′B, b′ in time T , then she processed it in state
A1, and otherwise, she resends eiA , M to Bob. Similarly, Bob waits to receive
a message i′A, a′, N ′, supposedly from Alice, for time T . If he does not receive
such a message, he resends iB, b to Alice.

Note that Eve can block the last flow of Alice, iA, a, N . In this case, Alice
has decremented her state, while Bob is waiting to receive iA, a, N , and possibly
resending iB, biB to remind Alice to send him iA, a, N . However, since Alice has
moved her state to A0, she will ignore Bob’s messages. This may appear to
be problematic since Bob is waiting for Alice. However, once Alice is ready to
authenticate a new message to Bob, she will be in program state A1 again, and
communication will resume.

228 I. Goldberg, A. Mashatan, and D.R. Stinson

4 Security of Our New Message Recognition Protocol

In this section, we begin by listing the required security properties of the hash
function H and the message authentication code MAC. Then, we consider dif-
ferent types of possible attacks against our protocol. Finally, we conclude with
a theorem which ensures the security of our protocol.

4.1 Security Assumptions

In this section, we list the security assumptions required for this protocol. These
definitions are notions defined by Lucks et al. [4].

Definition 1. Let secret y0, y1, . . . , yi and known yi+1 be chosen such that yi+1

= H(yi), yi = H(yi−1), . . . , y1 = H(y0). A hash function H is referred to as
a depth-i preimage resistant (i-PR) hash function when it is infeasible to
find y′ such that yi+1 = H(y′).

Definition 2. Let secret y0, y1, . . . , yi−1 and known yi, yi+1 be chosen such that
yi+1 = H(yi), yi = H(yi−1), . . . , y1 = H(y0). A hash function H is depth-i
second preimage resistant (i-SPR) when it is infeasible to find y′, y′ �= yi,
such that yi+1 = H(y′).

Definition 3. Let secret y0, y1, . . . , yi and known yi+1 be chosen such that yi+1

= H(yi), yi = H(yi−1), . . . , y1 = H(y0). A message authentication code MAC is
depth-i existentially unforgeable if it is infeasible to mount an existential
forgery against MACyi in an adaptive chosen message attack scenario.

4.2 Single-Session Attacks

In this section, we consider attacks that are started and completed in a single
session. We assume that Eve has stayed passive all along and she becomes active
in the current session for the first time. In case of a successful attack, Bob will
accept some message M ′ in the same session, where M ′ is not Null and not the
message sent by Alice in that session. Since Eve has been passive before this
session, we will have iA = iB at the start of the session; we let i := iA = iB
for ease of reference. For the same reason, we have iacceptA = iacceptB = i + 1.
Furthermore, Alice and Bob will have accepted all the intended keys so far. That
is, aB = ai+1 and bA = bi+1.

We now want to exhaustively list all possible single-session attacks. We follow
the notation of [2] in referring to different orderings of the flows. In each attack,
the adversary sends a flow to either Alice or Bob and receives a flow in response.
This notation labels a flow by A if the recipient is Alice, or by B when the
recipient is Bob. For instance, the following attack scenario corresponds to the
attack type of ABAB:

A New Message Recognition Protocol with Self-recoverability 229

– A: Eve sends M to Alice and she responds with eiA , M .
– B: Eve sends e′, M ′ to Bob and he replies with iB, biB .
– A: Eve sends i′B, b′ to Alice and receives iA, aiA , N from her.
– B: Eve sends i′A, a′, N ′ to Bob.

The number of distinct attacks against a three flow protocol is proved to
be

(
4
2

)
= 6 in [2]. These attacks are denoted AABB, ABBA, BABA, ABAB,

BBAA, and BAAB. We will look at these different attacks separately. We stress
that [2] formally proves this list to be an exhaustive list of all possible types of
attacks.

One can show that the BABA attack scenario can be reduced to the ABBA
attack. That is, if an adversary Oscar can mount a successful attack of type
BABA, then Eve can use Oscar and succeed in the ABBA attack scenario.
Similarly, we can show that the BAAB and ABBA attack scenarios are reduced
to the ABAB case. We outline these three reductions in the Appendix. It remains
to analyze the other three attack scenarios, namely AABB, BBAA, and ABAB.
We will reduce a successful adversary in these attacks to a player who can mount
a depth-i existential forgery or can find depth-i preimages or depth-i second
preimages.

Attack of Type AABB
Figure 4 depicts an attack of type AABB.

Alice Eve Bob

M←−−−−−−−−−−− A

eiA
, M

−−−−−−−−−−−→
i′B , b′←−−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−−→

B
e′, M ′

−−−−−−−−−−−→
iB , biB←−−−−−−−−−−−

B
i′A, a′, N ′

−−−−−−−−−−−→

Fig. 4. Attack of Type AABB

If i′A �= iB, Bob will not accept any messages. Since iA = iB = i, Eve has to
set i′A := iA in order to succeed. Moreover, Alice reveals iA and aiA only if b′ is
verified; that is, if bA = H(b′) (note that bA = bi+1, as discussed before).

Eve first interacts with Alice and has to find b′ before seeing biB = bi. This
implies that she has found a preimage of bA = bi+1. This exactly translates to
the notion of i-PR defined in Def. 1.

230 I. Goldberg, A. Mashatan, and D.R. Stinson

Attack of Type BBAA
Figure 5 illustrates the attack of type BBAA.

Alice Eve Bob

B
e′, M ′

−−−−−−−−−−−→
iB , biB←−−−−−−−−−−−

B
i′A, a′, N ′

−−−−−−−−−−−→
M←−−−−−−−−−−− A

eiA
, M

−−−−−−−−−−−→
i′B , b′←−−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−−→

Fig. 5. Attack of Type BBAA

Alice tries to deceive Bob before she starts interacting with Alice. In order to
succeed, Eve needs to present Bob with an a′ such that aB = H(a′), without
having seen aiA = ai (note that aB = ai+1, as discussed before). In other words,
she is trying to find a preimage of aB = ai+1. If Eve can successfully find such a
preimage, the she translates to a successful player who finds depth-i preimages,
as defined in Def. 1.

Attack of Type ABAB
Depicted in Fig. 6 is the ABAB attack.

Alice Eve Bob

M←−−−−−−−−−−− A

eiA
, M

−−−−−−−−−−−→

B
e′, M ′

−−−−−−−−−−−→
iB , biB←−−−−−−−−−−−

i′B , b′←−−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−−→

B
i′A, a′, N ′

−−−−−−−−−−−→

Fig. 6. Attack of Type ABAB

A New Message Recognition Protocol with Self-recoverability 231

In this scenario, Eve receives biB = bi before she has to send b′ to Alice. We
analyze the two cases b′ = bi and b′ �= bi separately.

If b′ �= bi, then it implies that Eve has found a depth-i second preimage of
bA = bi+1.

Otherwise, b′ = bi. Alice will verify b′ = bi and reveal aiA = ai. Eve now has
two choices. She chooses a′ such that either a′ = aiA or a′ �= aiA . If a′ �= aiA ,
then she has found a depth-i second preimage of ai+1 = aB. On other hand, if
a′ = aiA , then for Eve to succeed, she must set N ′ := M ′ and she must have set
e′ := MACa′(i′A‖M ′) before learning a′. That is, Eve has successfully forged a
MAC. This reduces to the notion of depth-i existential forgery defined in Def. 3.

4.3 Multi-session Attacks

Having ruled out the possibility of single-session attacks, we now turn our at-
tention to multi-session attacks. Consider attack scenarios which occur over two
or more sessions. In such a case, the adversary becomes active in one session
and concludes her attack in one of the following sessions. In case of a successful
attack, Bob will accept M ′ in the last session of the attack, where M ′ is not
Null and not the message sent by Alice in that session.

Just before Eve becomes active, similar to the single-session attack scenario
discussed above, we must have iA = iB and iacceptA = iacceptB = iA + 1. We
again let i := iA = iB for ease of reference. Moreover, all of the intended keys
will have been accepted to this point, so as a result, aB = ai+1 and bA = bi+1.

We now assume that during session i, Eve becomes active by initiating a flow
with either Alice or Bob, or changing the information sent by them. Since we are
considering multi-session attacks, the attack should not entirely take place in one
session. As a result, Eve is not making Bob accept her message M ′ immediately
after she becomes active. The following three cases can happen once Eve becomes
active:

Case 1. Bob is not engaged right away. That is, Eve first interacts with Alice.
Case 2. Bob is engaged right away and he outputs the message M , sent by

Alice.
Case 3. Bob is engaged right away and he outputs Null.

We discuss each case separately.

Case 1. Let us assume that Eve first interacts with Alice and does not engage
Bob. In order for Alice to conclude her session, she must receive i′B, b′ such
that i′B = i and bi+1 = H(b′). Otherwise, Alice will detect that something
is going on, hence, she will not reveal i, ai and, instead, will resend ei, M .
If Eve wants to remain undetected and be able to continue with her attack,
she needs to send i′B, b′ such that i′B = i and bi+1 = H(b′). This means that
Eve has found a depth-i preimage of bi+1.

Case 2. Now assume that Bob is engaged and he outputs the message M , sent
by Alice. That is, on input (M), Alice has sent ei, M to Bob. Since Bob

232 I. Goldberg, A. Mashatan, and D.R. Stinson

accepts M at the end, it means that he, indeed, has received M in the first
flow. Moreover, for Bob to accept M , he must receive i′A, a′, N ′ such that
i′A = i, ai+1 = H(a′), and N ′ = M . There are three different cases to
consider here.
– Not having received i, ai, M from Alice, Eve finds i′A, a′, N ′ such that

i′A = i and ai+1 = H(a′). That is, she finds a depth-i preimage of ai+1.
– Having received i, ai, M from Alice, Eve finds i′A, a′, N ′ such that i′A = i,

ai+1 = H(a′), and ai �= a′. That is, she finds a depth-i second preimage
of ai+1.

– Eve sets i′A, a′, N ′ = i, ai, M . That is, Eve relays Alice’s last flow. Note
that Alice reveals her last flow only if she receives i′B, b′ such that i′B = i
and bi+1 = H(b′). There are again three cases to consider here. Either
Eve has found a depth-i preimage of bi+1, she has found a depth-i second
preimage of bi+1, or she has relayed i, b faithfully. In the latter case, Eve
has faithfully relayed all messages, and this does not constitute an attack
by an active adversary. This contradicts our assumption that Eve first
becomes active in session i.

Case 3. Bob is engaged right away and he outputs Null. This means that he
has received and verified i′A and a′. There are again three cases to consider.
Either Eve has found a depth-i preimage of ai+1, or she has found a depth-i
second preimage of ai+1, or i′A and a′ are the correct i, ai as revealed by Alice.
In this last case, Alice and Bob have successfully remained synchronized, but
were unable to authenticate the messages they intended to authenticate.

The above discussion concludes that in the session immediately after Eve be-
comes active, she can only stop Alice and Bob from authenticating the intended
message, but she cannot bring them out of their synchronized states unless she
is able to solve the depth-i PR or depth-i SPR problems defined in Definitions 1
and 2. Moreover, if Alice and Bob are synchronized at the beginning of a session,
then they will end the session in a synchronized state, unless Eve is able to find
depth-i preimages or depth-i second preimages.

At the beginning of a multi-session attack, Alice and Bob are synchronized.
The above discussion implies that they remain synchronized until the very last
session of the attack. We can look at this last session of the attack separately
and think of it as a single-session attack. As a result, any multi-session attack
translates to a single-session attack, which were already ruled out in Section 4.2.

Note that the adversary can only exhaust Alice’s and Bob’s values of the hash
chain one at a time. That is, she can not make them jump more than one step
down the hash chain values.

4.4 Self-recoverability

In this section, we show that once Eve stops interfering with their message flows,
Alice and Bob will be able to resume successful communication of recognized
messages. Because we have already shown that Alice and Bob remain synchro-
nized in their i values throughout an active attack by Eve (under the security

A New Message Recognition Protocol with Self-recoverability 233

assumptions on H and MAC), we need only show that they do not get “trapped”
in a program state, as was the case in the Jane Doe protocol, for example.

We consider the possible combinations of program states which Alice and Bob
are in when Eve becomes passive. We first consider the case where Alice is in
state A1.

– If Alice is in A1 and Bob is in B0, then after time T , Alice will resend
[eiA , M] to Bob, which will cause him to leave state B0, and the protocol
will continue.

– If Alice is in A1 and Bob is in B1, then Bob will send [iB, biB] to Alice
and advance to B2, which will cause her to send an appropriate message
to Bob, and herself return to A0. Bob will return to B0, though he may
Accept(Null) if Eve forged the M ′ which caused Bob to enter the B1 state.
This can of course only affect the first Accept after Eve’s interference, how-
ever.

– If Alice is in A1 and Bob is in B2, then Alice will be resending useless
messages to Bob, and staying in A1, but after time T , Bob will return to
B1, and we proceed as above.

If Alice is in A0, then no progress will be made until the next time she tries
to send a message to Bob. At that point, Alice will enter state A1, and the
analysis continues as above.

4.5 Main Theorem

The above discussion concludes the discussion of the security and self-
recoverability of the proposed message recognition protocol, and forms the proof
of the following theorem.

Security and Self-recoverability Theorem. A successful adversary against
the protocol of Section 3 who efficiently deceives Bob into accepting (M ′,i), where
M ′ is not Null and Alice did not send M ′ in session i, implies an efficient al-
gorithm that finds depth-i preimages or depth-i second preimages, or creates
depth-i existential forgeries. Moreover, the adversary cannot stop Alice and Bob
from successfully executing the protocol unless she is actively disrupting the com-
munication for the lifetime of Alice and Bob.

5 Comments and Conclusion

We briefly reviewed the definitions and the security model of message recogni-
tion protocols in the literature. We looked at the Jane Doe message recognition
protocol proposed by Lucks et al. [4] in more detail and described its inability
to recover in case of a certain adversarial disruption. In order to overcome the
recoverability problem of the Jane Doe protocol, we proposed a new message
recognition protocol, which is based on the Jane Doe protocol. This new proto-
col incorporates a resynchronization technique within itself and, hence, provides
self-recoverability. Finally, we formally proved the security of our protocol.

234 I. Goldberg, A. Mashatan, and D.R. Stinson

It should be noted that our new protocol is somewhat less efficient than the
Jane Doe protocol in that each message M is transmitted twice (in the first
flow, and again in the third flow of Figure 3). This would not be a problem if the
communication channel is inexpensive. However, it (roughly) doubles the power
consumption as compared to the Jane Doe protocol if messages are large. If this
creates a problem, it would be possible to modify our protocol by sending N =
H(M) in the third flow instead of N = M . Then Bob checks that N ′ = H(M ′)
instead of N ′ = M ′.

Acknowledgements

We would like to thank Natural Sciences and Engineering Research Council of
Canada (NSERC) and Mathematics of Information Technology and Complex
Systems (MITACS) for supporting this research.

References

1. Anderson, R., Bergadano, F., Crispo, B., Lee, J.-H., Manifavas, C., Needham, R.:
A new family of authentication protocols. In: ACMOSR: ACM Operating Systems
Review, vol. 32, pp. 9–20 (1998)

2. Gehrmann, C.: Multiround unconditionally secure authentication. Designs, Codes,
and Cryptography 15(1), 67–86 (1998)

3. Hammell, J., Weimerskirch, A., Girao, J., Westhoff, D.: Recognition in a low-
power environment. In: ICDCSW 2005: Proceedings of the Second International
Workshop on Wireless Ad Hoc Networking (WWAN), Washington, DC, USA, 2005,
pp. 933–938. IEEE Computer Society Press, Los Alamitos (2005)

4. Lucks, S., Zenner, E., Weimerskirch, A., Westhoff, D.: Entity recognition for sensor
network motes. In: GI Jahrestagung (2), pp. 145–149 (2005)

5. Lucks, S., Zenner, E., Weimerskirch, A., Westhoff, D.: Concrete security for entity
recognition: The Jane Doe protocol. In: Chowdhury, D.R., Rijmen, V., Das, A.
(eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 158–171. Springer, Heidelberg
(2008)

6. Mashatan, A., Stinson, D.R.: A New Message Recognition Protocol For Ad Hoc
Pervasive Networks. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS
2008. LNCS, vol. 5339, pp. 378–394. Springer, Heidelberg (2008)

7. Mashatan, A., Stinson, D.R.: Interactive two-channel message authentication based
on Interactive-Collision Resistant hash functions. Int. J. Inf. Secur. 8(1), 49–60
(2009)

8. Mashatan, A., Stinson, D.R.: Recognition in ad hoc pervasive networks. Technical
Report 2008-12, Centre for Applied Cryptographic Research (CACR), University
of Waterloo, Canada (2008)

9. Mitchell, C.J.: Remote user authentication using public information. In: Paterson,
K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 360–369. Springer,
Heidelberg (2003)

10. Pasini, S., Vaudenay, S.: An optimal non-interactive message authentication proto-
col. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 280–294. Springer,
Heidelberg (2006)

A New Message Recognition Protocol with Self-recoverability 235

11. Weimerskirch, A., Westhoff, D.: Zero common-knowledge authentication for perva-
sive networks. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 73–87. Springer, Heidelberg (2004)

A Reducing Three Single-Session Attacks

As was described in Section 4, Gehrmann [2] formally proves that there are
only six possible types of single-session attack against the protocol of Figure 3.
We analyzed the AABB, BBAA, and ABAB attacks in that section. Here we
examine the remaining three attacks: BABA, BAAB, and ABBA. The BABA
attack is reduced to the ABBA attack. Then, the ABBA attack is reduced to the
ABAB attack. Finally, the BAAB attack is also reduced to the ABAB attack.
This concludes the analysis of the six different attack scenarios.

A.1 Reducing the BABA Attack to an ABBA Attack

The ABBA attack scenario, depicted in Fig. 7, is as follows:

– A: Oscar sends M to Alice and receives eiA , M from her.
– B: Oscar sends e′, M ′ to Bob and he sends iB, biB .
– B: Oscar sends i′A, a′, N ′ to Bob.
– A: Oscar sends i′B, b′ to Alice and she replies with iA, aiA , N .

Alice Oscar Bob

M←−−−−−−−−−−− A

eiA
, M

−−−−−−−−−−−→

B
e′, M ′

−−−−−−−−−−−→
iB , biB←−−−−−−−−−−−

B
i′A, a′, N ′

−−−−−−−−−−−→
i′B , b′←−−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−−→

Fig. 7. Attack of Type ABBA

On the other hand, the BABA attack scenario, illustrated in Fig. 8, is as
follows:

– B: Oscar sends e′, M ′ to Bob and he sends iB, biB .
– A: Oscar sends M to Alice and receives eiA , M from her.

236 I. Goldberg, A. Mashatan, and D.R. Stinson

Alice Oscar Bob

B
e′, M ′

−−−−−−−−−−−→
iB , biB←−−−−−−−−−−−

M←−−−−−−−−−−− A

eiA
, M

−−−−−−−−−−−→

B
i′A, a′, N ′

−−−−−−−−−−−→
i′B , b′←−−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−−→

Fig. 8. Attack of Type BABA

– B: Oscar sends i′A, a′, N ′ to Bob.
– A: Oscar sends i′B, b′ to Alice and she replies with iA, aiA , N .

These two attack scenarios differ in the order of the first two steps and are
identical otherwise. In the BABA attack scenario, Oscar commits to e′ and M ′

before receiving eiA . Note that knowing eiA could possibly help him in choosing
e′. On the other hand, Oscar receives iB and biB before sending M . The adversary
knows the value of iB. Moreover, the choice of M is independent of the value of
biB . In other words, knowing biB is not going to help the adversary in choosing
M . Hence, if Oscar can win in the BABA attack scenario by first committing to
e′ and M ′ and then receiving eiA , then he can win the ABBA attack scenario
with the same values M, M ′, and e.

A.2 Reducing the ABBA Attack to an ABAB Attack

Recall the ABAB attack scenario from Section 4:

– A: Oscar sends M to Alice and receives eiA , M from her.
– B: Oscar sends e′, M ′ to Bob and he sends iB, biB .
– A: Oscar sends i′B, b′ to Alice and she replies with iA, aiA , N .
– B: Oscar sends i′A, a′, N ′ to Bob.

The ABBA attack differs from the ABAB attack in the order of the last
two steps. In the ABAB attack, Oscar receives iA, aiA , N from Alice, and then
he has to send i′A, a′, N ′ to Bob. Knowing iA, aiA , N can help him choose a
winning i′A, a′, N ′, whereas in the ABBA attack scenario, Oscar sends i′A, a′, N ′

before seeing iA, aiA , N . If Oscar has a winning strategy in the ABBA attack
scenario, then using the same values of i′A, a′, N ′, he will win the ABAB attack
scenario.

A New Message Recognition Protocol with Self-recoverability 237

A.3 Reducing the BAAB Attack to an ABAB Attack

The BAAB attack scenario is as follows:

– B: Oscar sends e′, M ′ to Bob and he sends iB, biB .
– A: Oscar sends M to Alice and receives eiA , M from her.
– A: Oscar sends i′B, b′ to Alice and she replies with iA, aiA , N .
– B: Oscar sends i′A, a′, N ′ to Bob.

Figure 9 depicts this attack.

Alice Oscar Bob

B
e′, M ′

−−−−−−−−−−−→
iB , biB←−−−−−−−−−−−

M←−−−−−−−−−−− A

eiA
, M

−−−−−−−−−−−→
i′B , b′←−−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−−→

B
i′A, a′, N ′

−−−−−−−−−−−→

Fig. 9. Attack of Type BAAB

The analysis of this case is analogous to that of Section A.1. The BAAB
attack scenario differs from the ABAB attack scenario in the order of the first
two steps. In the BAAB attack scenario, Oscar has to commit to e′ and M ′

before seeing eiA . Although Oscar receives iB and biB before sending M , these
values are independent of the choice of M . That is, seeing biB is not going to help
the adversary in choosing M . Hence, a winning strategy in the BAAB attack
scenario reduces to a winning strategy in the ABAB attack scenario.

	A New Message Recognition Protocol with Self-recoverability for Ad Hoc Pervasive Networks
	Introduction
	Previous Recognition Protocols
	A New Message Recognition Protocol
	Security of Our New Message Recognition Protocol
	Security Assumptions
	Single-Session Attacks
	Multi-session Attacks
	Self-recoverability
	Main Theorem

	Comments and Conclusion
	References
	A Reducing Three Single-Session Attacks
	A.1 Reducing the BABA Attack to an ABBA Attack
	A.2 Reducing the ABBA Attack to an ABAB Attack
	A.3 Reducing the BAAB Attack to an ABAB Attack

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

