Skip to main content

Mikrobiologie und Ökophysiologie des Methan-Kreislaufs

  • Chapter
  • 10k Accesses

Part of the book series: Springer-Lehrbuch ((SLB))

Zusammenfassung

Methan ist ein Spurengas in der Atmosphäre (1,8 ppmv), dessen Konzentration aufgrund von anthropogenen Aktivitäten jährlich mit etwa 0,5–1% zunimmt. Es wird zusammen mit CO2, N2O (Lachgas), O3 (Ozon) und Fluorchlorkohlenwasserstoffen (CFC) zu den potenziellen Treibhausgasen gerechnet. Methan ist mit etwa 15% am Treibhauspotenzial beteiligt und als Treibhausgas potenziell 20- bis 30-mal effektiver als CO2. Die globale CH4-Zunahme in der Atmosphäre wird von einem Ungleichgewicht zwischen CH4-Freisetzung und -Oxidation verursacht. Im globalen Methankreislauf bilden sowohl photochemische Vorgänge in der Tropo- und Stratosphäre (Methanoxidation durch OH-Radikale) als auch mikrobiologische Prozesse (Methanoxidation) in den terrestrischen Ökosystemen die wesentlichen CH 4 -Senken. Hingegen können weltweit die natürlichen Feuchtgebiete (Moore, Sümpfe, etc.), Nassreisböden (wetland rice soils), Verbrennung von Biomasse und fossiler Energie sowie die Pansen von Wiederkäuern als Hauptquellen der Methanbildung gelten (Tabelle 15.1). Überall wo CH4 durch methanogene Archaea gebildet wird, sind auch die methanotrophen (methanoxidierenden) Bakterien nicht weit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Achtnich C, Bak F, Conrad R (1995) Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol Fertil Soils 19: 65–72

    Article  CAS  Google Scholar 

  • Aulakh MS, Wassmann R, Renneberg H (2001) Methane emissions from rice fields: Quantification, mechanisms, role of management, and mitigation options. Adv Agron 70: 193–260

    Article  Google Scholar 

  • Bedard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4 + , and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53: 68–84

    PubMed  CAS  Google Scholar 

  • Boone DR, Castenholz RW (2001) Bergey’s manual of systematic bacteriology.Vol 1.The archaea and the deeply branched and phototrophic bacteria, Springer, New York Berlin Heidelberg

    Google Scholar 

  • Bronson KF, Mosier AR (1991) Effect of encapsulated calcium carbide on dinitrogen, nitrous oxide, methane, and carbon dioxide emissions from flooded rice. Biol Fertil Soils 11: 116–120

    Article  CAS  Google Scholar 

  • Bronson KF, Mosier AR (1994) Suppression of methane oxidation in aerobic soil by nitrogen fertilizers nitrification inhibitors, and urease inhibitors. Biol Fertil Soils 17: 263–268

    Article  CAS  Google Scholar 

  • Conrad R (2002) Control of microbial methane production in wetland rice fields. Nutrient Cycl Agroecosyst 64: 59–69

    Article  CAS  Google Scholar 

  • Conrad R (2007) Soil microbial communities and global climate change: Methanotrophic and methanogenic communities as paradigms. In: Elsas van DJ, Jansson JK, Trevors JT (Hrsg) Modern soil microbiology, CRC, Boca Raton London New York, S 263–282

    Google Scholar 

  • Conrad R (2008) Methanogenic microbial communities associated with aquatic plants. In: Varma A, Abbott I, Werner D, Hampp R (Hrsg) Plant surface microbiology, Springer, Heidelberg, S 35–50

    Chapter  Google Scholar 

  • Crutzen PJ, Lelieveld J (2001) Human impact on atmospheric chemistry. Annu Rev Earth Planet Sci 29: 17–45

    Article  CAS  Google Scholar 

  • Denier van der Gon HAC, Neue HU (1996) Oxidation of methane in the rhizosphere of rice plants. Biol Fertil Soils 22: 359–366

    Article  CAS  Google Scholar 

  • Ermler U, Grabarse W, Shima S, Coubeaud M, Thauer RK (1998) Mechanismus der mikrobiellen Methanbildung. Biospektrum 4: 20–24

    CAS  Google Scholar 

  • Ettwig KF, Shima S, van de Pas-Schoonen, Kahnt J, Medema MH, Op den Campf HJM, Jetten MSM, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10: 3164–3173

    Article  PubMed  CAS  Google Scholar 

  • Ettwig KF, Alen T, van Pas-Schoonen KT, Jetten MSM, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75: 3656–3662

    Article  PubMed  CAS  Google Scholar 

  • Frenzel P (2000) Plant-associated methane oxidation in rice fields and wetlands. Adv Microb Ecol 16: 85–114

    CAS  Google Scholar 

  • Gilbert B, Frenzel P (1998) Rice roots and CH4 oxidation: The activity of bacteria, their distribution and the microenvironment. Soil Biol Biochem 14: 1903–1916

    Article  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60: 439–471

    PubMed  CAS  Google Scholar 

  • Holmes AJ, Roslev P, McDonald JR, Iversen N, Hendriksen K, Murrell JC (1999) Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol 65: 3312–3318

    PubMed  CAS  Google Scholar 

  • Hütsch BW (1996) Methane oxidation in soils of two long-term fertilization experiments in Germany. Soil Biol Biochem 28: 773–782

    Article  Google Scholar 

  • Hütsch BW (1998a) Sources and sinks of methane in German agroecosystems in context of the global methane budget. Agribiol Res 51: 75–87

    Google Scholar 

  • Hütsch BW (1998b) Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH. Biol Fertil Soils 28: 27–35

    Article  Google Scholar 

  • Hütsch BW, Webster CP, Powlson DS (1993) Long-term fertilization experiments in Germany. Soil Biol Biochem 28: 773–782

    Article  Google Scholar 

  • Hütsch BW, Webster CP, Powlson DS (1994) Methane oxidation in soil as affected by land use, soil pH and N-fertilization. Soil Biol Biochem 26: 1613–1622

    Article  Google Scholar 

  • Hütsch BW, Russell P, Mengel K (1996). CH4-oxidation in two temperate arable soils as affected by nitrate and ammonium application. Biol Fertil Soils 23: 86–92

    Article  Google Scholar 

  • Inubushi K, Sugii H, Watanabe I, Wassmann R (2002) Evaluation of methane oxidation in rice plant-soil system. Nutrient Cycl Agroecosyst 64: 71–77

    Article  CAS  Google Scholar 

  • Jäckel U, Schnell S (2000) Suppression of methane emission from rice paddies by ferric iron fertilization. Soil Biol Biochem 32: 1811–1814

    Article  Google Scholar 

  • Keltjens JT, Vogels GD (1996) Metabolic regulation in methanogenic archaea during growth in hydrogen and CO2. Environ Monit Assessm 42: 19–37

    Article  CAS  Google Scholar 

  • Le Mer J, Roger, P (2001) Production, oxidation, emission and consumption of methane by soils: A review. Eur J Soil Biol 37: 25–50

    Article  Google Scholar 

  • Lueders T, Friedrich MW (2002) Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil. Appl Environ Microbiol 68: 2484–2494

    Article  PubMed  CAS  Google Scholar 

  • Mosier A, Schimel D, Valentine D, Bronson K and Parton W (1991) Methane and nitrous oxide fluxes in native, fertilize and cultivated grasslands. Nature 350: 330–332

    Article  CAS  Google Scholar 

  • Mohanty SR, Bodelier PLE, Floris V, Conrad R (2006) Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soil. Appl Environ Microbiol 72: 1346–1354

    Article  PubMed  CAS  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S et al. (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440: 918–921

    Article  PubMed  CAS  Google Scholar 

  • Raimbault M (1975) Étude de l’influence inhibitrice de l’acetylene sur la formation biologique du methane dans un sol de rizière. Ann Microbiol (Inst Pasteur) 126A: 247–258

    CAS  Google Scholar 

  • Singh S, Kumar S, Jain MC (1997) Methane emission from two Indian soils planted with different rice cultivars. Biol Fertil Soils 25: 285–289

    Article  CAS  Google Scholar 

  • Singh S, Singh JS, Kashyap AK (1999) Methane flux from irrigated rice fields in relation to crop growth and N-fertilization. Soil Biol Biochem 31: 1219–1228

    Article  CAS  Google Scholar 

  • Wassmann R, Aulakh MS (2000) The role of rice plants in regulating mechanisms of methane emissions. Biol Fertil Soils 31: 20–29

    Article  CAS  Google Scholar 

  • Weiske A, Benckiser G, Herbert T, Ottow JCG (2001) Influence of the nitrification inhibitor 3,4-dimethyl pyrazole phosphate (DMPP) in comparison to dicyandiamid (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol Fertil Soils 34: 109–117

    Article  CAS  Google Scholar 

  • Willison TW, Cook R, Müller A, Powlson DS (1996) CH4 oxidation in soils fertilized with organic and inorganic-N; Differential effects. Soil Biol Biochem 28: 135–136

    Article  CAS  Google Scholar 

  • Xu X, Boecks P, van Cleemput O, Zhou L (2002) Urease and nitrification inhibitors to reduce emissions of CH4 and N2O in rice production. Nutr Cycl Agroecosyst 64: 203–211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ottow, J. (2011). Mikrobiologie und Ökophysiologie des Methan-Kreislaufs. In: Mikrobiologie von Böden. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00824-5_15

Download citation

Publish with us

Policies and ethics