
Topology Preserving Constrained Graph Layout

Tim Dwyer, Kim Marriott, and Michael Wybrow

Clayton School of Information Technology,
Monash University, Clayton, Victoria 3800, Australia

{Tim.Dwyer,Kim.Marriott,Michael.Wybrow}@infotech.monash.edu.au

Abstract. Constrained graph layout is a recent generalisation of force-directed
graph layout which allows constraints on node placement. We give a constrained
graph layout algorithm that takes an initial feasible layout and improves it while
preserving the topology of the initial layout. The algorithm supports poly-line
connectors and clusters. During layout the connectors and cluster boundaries act
like impervious rubber-bands which try to shrink in length. The intended applica-
tion for our algorithm is dynamic graph layout, but it can also be used to improve
layouts generated by other graph layout techniques.

1 Introduction

A core requirement of dynamic graph layout is stability of layout during changes to
the graph so as to preserve the user’s mental model of the graph. One natural require-
ment to achieve this is to preserve the topology of the current layout during layout
changes. While topology preservation has been used for dynamic layout based on orth-
ogonal graph layout, its use in force-directed approaches to dynamic layout is much
less common.

Constrained graph layout [12,3,4] is a recent generalisation of the force-directed
model for graph layout. Like force-directed methods, these techniques find a layout
minimising a goal function such as the standard stress goal function which tries to place
all pairs of nodes their ideal (graph-theoretic) distance apart. However, unlike force
directed methods, constrained graph layout algorithms allow the goal to be minimised
subject to placement constraints on the nodes. In this paper we detail a constrained
graph layout algorithm that preserves the topology of the initial layout. The primary
motivation for our development of this algorithm was to support dynamic layout but it
can also be used to improve layouts generated by other graph layout techniques such as
planarisation techniques [11].

Our algorithm supports network diagrams with poly-line connectors and arbitrary
node clusters. It ensures that the nodes do not overlap and that additional constraints on
the layout—such as alignment and downward pointing edges—remain satisfied. During
layout optimisation the paths, i.e poly-line connectors and cluster boundaries, act like
rubber-bands, trying to shrink in length and hence, in the case of connectors, straighten.
Like physical rubber bands, the paths are impervious and do not allow nodes and other

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 230–241, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Topology Preserving Constrained Graph Layout 231

(a) Euler diagram

(b) Metabolic pathway

Fig. 1. Example layouts obtained with the topology
preserving constrained graph layout algorithm. In
the metabolic pathway, three vertical alignment con-
straints have been added to improve the layout.

paths to pass through them. Thus, the
initial layout topology is preserved.
Figure 1 shows example layouts ob-
tained with our algorithm.

Extending constrained graph lay-
out to handle topology preserva-
tion is conceptually quite natural
since topology preservation can
be regarded as a kind of con-
straint. However, it was not possible
to straightforwardly extend existing
constrained graph layout algorithms
to preserve topology. One issue is
that previous algorithms were based
on functional majorization whose
use relied on particular properties of
the stress goal function.

The main technical innovations
in our new algorithm are fourfold.
First, we utilise a new goal func-
tion, P-stress, that encodes the rub-
ber band metaphor, measuring the
stretch of paths as well as trying to
place objects a minimum distance
apart. Importantly, the P-stress is
bend-point invariant in the sense that
merging two consecutive collinear
segments in a path does not change
the value of the goal function. This
aids convergence since it means that
the goal function behaves continuously as paths change during optimisation. Second,
we utilise gradient projection rather than functional majorization. This approach is
generic in the choice of goal function and so can be used to minimise P-stress. Third,
we give a novel algorithm for updating paths in a layout given that nodes are moved in a
single dimension. This maintains the relative order of nodes and paths in that dimension
and so preserves the initial topology. The final innovation is our uniform treatment of
connector routes and cluster boundaries as impervious paths. This allows our algorithm
to handle arbitrary clusters.

The algorithm for topology preserving constrained graph layout given here under-
pins two dynamic graph layout applications we have developed. The first is a network
diagram authoring tool, Dunnart, which uses the algorithm to provide continuous layout
adjustment during user interaction [5]. The second is a network diagram browser which
uses the algorithm to update the layout of a detailed view of part of the network as the
user changes the focus node or collapses or expands node clusters [6]. The contribution
of this paper is to detail the algorithm.



232 T. Dwyer, K. Marriott, and M. Wybrow

2 Related Work

There has been considerable interest in developing techniques for stable graph layout
that preserve the user’s mental model of the graph [14]. These techniques are quite
specialised to the underlying layout algorithms. The standard approach for supporting
stability in force-directed approaches is to simply add a “stay force” on each node so
that it does not move unnecessarily, e.g. [9]. Stable dynamic layout has also been studied
for orthogonal graph layout, e.g. [2]. There, stability is preserved by trying to preserve
the current bend points and angles. This has the effect of preserving the layout topology.
Finally, in the case of Sugiyama-style layered layout stability is achieved by preserving
the current horizontal and vertical ordering between nodes, e.g. [15]. Our approach
is the first that we are aware of to base stability on topology preservation in a force-
directed style layout. It has the advantage over stay forces that the layout is better able
to adjust to changes while still preserving the original structure.

Orthogonal graph layout algorithms typically feature a refinement step that attempts
to shorten edges while preserving edge crossing topology [8]. However, the approach
is very specific to orthogonal drawings. Another method, [1], used a force directed ap-
proach but only handled abstract graphs with point nodes and straight-line edges. Most
closely related is our earlier extension to constrained stress majorization that preserves
layout topology while trying to straighten bends in poly-line connectors [7]. This works
by introducing dummy nodes in each connector at all possible bend points and adding
constraints to ensure a minimum separation between objects and bend-points. Unfor-
tunately, our experience with this algorithm was that straightening bends sometimes
meant that connector length was increased and that the algorithm did not scale to mod-
erately sized networks because of the large number of dummy nodes. Even worse it
did not always converge because the goal function was not bend-point invariant. The
algorithm given here is considerably simpler, convergent and faster.

3 Problem Definition

A graph G = (V, E, C) consists of a set of nodes V , a set of edges E ⊆ V × V , and a
set of node clusters C ⊆ ℘V . We let width(v) and height(v) give the width and height
of the bounding rectangle, rv , of each node v ∈ V .

A 2-D drawing of a graph is specified by a tuple (x, y, P ) where (xv, yv) gives
the centre position for each node v ∈ V and P is a set of paths specifying the edge
routings and cluster boundaries. A path is a piecewise linear path through a sequence
of points p1, . . . , pk where each point is either the center or one of the corners of a
node’s bounding rectangle and represented by a pair (v, i) where v ∈ V and i ∈
{Centre, TL, TR, BL, BR}). In the case of a path giving the routing for an edge
e = (s, t) ∈ E, p1 is the centre of node s and pk the centre of node t while the other
points are node bounding rectangle corners. In the case that the path is for a cluster
boundary, all points must correspond to node bounding rectangle corners and p1 = pk.

Separation constraints are inequality or equality constraints over pairs of position
variables in either the horizontal or vertical axes of the drawing, e.g. for a pair of nodes
u, v ∈ V we might define a separation constraint over their x−positions: xu + g ≤ xv

where g specifies a minimum spacing between them.



Topology Preserving Constrained Graph Layout 233

(a) Invalid (b) Not tight (c) Feasible

Fig. 2. Example of incorrect (a,b) and correct (c) paths

A feasible drawing of a graph (see Fig. 2) is one in which:

– all separation constraints are satisfied;
– no two node rectangles overlap;
– the nodes inside the region defined by the boundary of each cluster c are exactly

the nodes in c;
– every path p ∈ P is valid and tight.

A valid path is one in which no segment passes through a node rectangle, except the
first and last segments in a path corresponding to an edge which must terminate at the
centre of rectangles as specified above. A tight path is one where every bend (described
by three consecutive points a, b, c in the path) is wrapped around the rectangle rv asso-
ciated with the bend point b = (v, i). That is, the points a, b, c in order must constitute
a turn in the same direction as the points a, b, v in order, and the points b, c, v must also
constitute a turn in the same direction.

A common strategy for finding aesthetically pleasing drawings of graphs is to define
a cost function over the positions of the nodes and then to minimise this cost function
by adjusting these positions. In our case we are also interested in the lengths of paths.
Therefore, we use a novel cost function P-stress which also takes the paths P of the
layout into consideration:

∑

u<v∈V

wuv

(
(duv − ||(xu, yu), (xv, yv)||)+

)2 +
∑

p∈P

wp

(
(||p|| − Lp)+

)2

where (z)+ is z if z ≥ 0 and 0 otherwise and wp = 1
L2

p
, wuv = 1

d2
uv

.

The first component of P-stress is a modification of the stress function used in the
stress majorization [10] and Kamada and Kawai [13] layout methods. This considers the
ideal distance duv between each pair of nodes which is proportional to the graph theo-
retic distance, i.e. shortest path, between the nodes. However, unlike the stress function,
nodes that are more than their ideal distance apart are not penalised, thus eliminating
long range attraction since this can cause issues in highly constrained problems.

The second component of P-stress tries to make the length of each path p in the
network, no more than its ideal length Lp. The ideal length of the route for an edge
e is simply a fixed constant while the desired length of the boundary for cluster c is
2
√

π
∑

v∈c width(v)height(v) (i.e. the ideal length is proportional to the perimeter of
the circle of the same area as that of the constituent nodes). This second component is
purely attractive, otherwise minimising P-stress could potentially increase bends.



234 T. Dwyer, K. Marriott, and M. Wybrow

Note that P-stress is bend-point invariant in the sense that merging two consecutive
collinear segments in a path does not change the P-stress of layout since the overall
path length does not change. This is important for convergence of the layout algorithm.

4 Minimising P-Stress Using Gradient Projection

Our layout problem is, therefore, given a feasible layout for a graph to find a new
layout that is feasible, has the same topology as the original layout, and which locally
minimises P-stress. In this section we give an algorithm to do this. An example of its
operation is shown in Fig. 3.

Our algorithm works by alternately adjusting horizontal and vertical positions of all
nodes to incrementally reduce P-stress. This makes the computation of the new po-
sitions considerably simpler than if both dimensions were considered together. Con-
strained stress majorization [4] also uses a similar approach to reduce stress. However,
the useful Cauchy-Schwarz based expansion of the stress function into horizontal and
vertical quadratic forms which strictly (upper-)bound the goal function, is no longer
easily derived for P-stress. Instead, at each iteration we use a quadratic approxima-
tion based on the second order Taylor series expansion of P-stress around the current
horizontal position x and compute a descent vector −g and step size α from the first
and second derivatives of this quadratic to compute a new position d for the horizontal
position variables. We then use the function project-x to project d onto the horizon-
tal constraints necessary to avoid overlap and to preserve topology and any other user
specified separation constraints, Cx, on the horizontal variables. Next we perform an
analogous operation to compute a new position for the vertical position variables y.
The high-level algorithm is thus:

procedure gradient-projection-x(x, y, P, C)
g ← ∇xP-stress(x, y, P )
H ← ∇2

xP-stress(x, y, P )
α ← gT g

gT Hg

d ← x − αg
return project-x(x, y, P, d, C)

procedure improve(x, y, P, Cx, Cy)
(x′, y′, P ′) ← (x, y, P )
repeat

(x,P ′′) ← gradient-projection-x(x, y, P, Cx)
(y,P ) ← gradient-projection-y(x, y, P ′′, Cy)

until |P-stress(x′, y′, P ′) − P-stress(x, y, P )| sufficiently small
return (x, y, P )

Before giving details of projection we must make precise what we mean by topol-
ogy preservation. Considering just the horizontal case, since the vertical is symmetrical,
we say that a horizontal adjustment of the nodes from feasible layout L to feasible L′

is topology preserving if no node or line segment moves through another node or line
segment. More exactly, let M and M ′ be the layouts obtained from L and L′, respec-
tively, by infinitesimally reducing the height of each node’s bounding rectangle and



Topology Preserving Constrained Graph Layout 235

(a) Initial placement (b) After minimising P-stress

Fig. 3. Example of how our layout algorithm improves the network layout by reducing P-stress
(which shortens edge routes) while preserving the topology of the initial layout

appropriately modifying the paths. This means that rectangles whose top and bottom
were aligned in the original layout now have a infinitesimal vertical separation between
them. Then for any height h we must have that scanning left to right along the horizontal
line y = h encounters exactly the same sequence of edges, clusters and nodes in both
M and M ′ where an edge is encountered whenever the line intersects a path segment
for the edge, a cluster is encountered whenever the line intersects a path segment for
its boundary and a node is encountered when the line intersects the node’s bounding
rectangle.

5 Topology Preserving Projection

The heart of the layout algorithm are the procedures project-x and project-y which per-
form a projection operation in the specified axis. We shall focus on project-x: procedure
project-y is symmetric. The call project-x(x, y, P, d, C) returns a new x position and
paths (x′, P ′) s.t layout (x′, y, P ′) is feasible and preserves the topology of (x, y, P )
while ensuring x′ is as close as possible to the desired position d. It has three main
steps:

(1) Generate separation constraints Cno to ensure non-overlap of nodes and topology
constraints TC to ensure topology preservation.

(2) Project d on to SC = C ∪ Cno giving x̄. This is achieved by solving the quadratic
program:

min
x

∑

vinV

(xv − dv)2 subject to SC

(3) Update the path routing P to give P ′ by moving the nodes smoothly from x to x̄
appropriately adjusting the paths as the nodes move in order to satisfy the topology
constraints TC.

In Step 2 of project-x we solve the quadratic program using the incremental active-set
procedure solveQPSC given in [4]. Like most active-set methods it is difficult to prove
that this has polynomial running time, but in practice it is very fast, as indicated by our
experimental results. We now look at Steps 1 and 3 in more detail.

Non-overlap and topological constraints are generated for a horizontal move using
a top-to-bottom scan of the drawing. At each step we keep the list of currently open



236 T. Dwyer, K. Marriott, and M. Wybrow

node bounding rectangles and path line segments. To do so we process the vertical
opening and closings of each rectangle OR, CR and line segment OS, CS of the given
routing in order from top to bottom and, when two such events occur at the same vertical
position, then with precedence:

– OS before CS so that horizontal segments are handled properly
– CR before OR to avoid unnecessary non-overlap constraints (assuming no zero

height rectangles)
– CS before OR, CR before OS, OS before OR, and CR before CS to ensure all

possible segment/rectangle interactions are considered.

Fig. 4. Constraints generated
during a vertical scan. There
is one separation constraint
xu + 1

2 (width(u) + width(v)) ≤
xv to prevent overlap, three bend
constraints (the construction for
the constraint ensuring the path
remains tight around v is shown)
and three straight constraints at the
places where the segments s and t
may potentially bend.

For each rectangle opening (i.e. the top of each
rectangle) we add to Cno a separation constraint be-
tween the rectangle and its immediate left and right
neighbours in the list of open rectangles at that y-
position (the scan position). Each separation con-
straint has the form xu +s ≤ xv over the x positions
of nodes u and v and preserves the relative horizon-
tal ordering of u and v and prevents the nodes from
overlapping, where s = (width(u) + width(v))/2.

The scan also generates topology constraints be-
tween nodes and paths which ensure that the paths
remain tight and valid. There are two types of
topology constraints: straight constraints—between
a node w and a path segment uv which ensures that
the path remains valid, i.e. the node does not over-
lap the path segment and bend constraints associ-
ated with a bend point between two consecutive line
segments uv and vw which ensures that the path re-
mains tight around the bend point v.

Both kinds of topology constraint give rise to a
linear inequality over the three variables corresponding to u, v and w enforcing that the
rectangle rw associated with node w must be to the right or left of a line between the
corners of two nodes u and v. We write this in the standard form xw+g⊕xu+p(xv−xu)
where ⊕ is either ≤ or ≥. For straight constraints 0 < p ≤ 1 while for bend constraints
p > 1. For instance, in the case of the bend constraint enforcing that the path remains
tight around the bend point v in Fig. 4 we have that

xwTL ≥ xuBR +
ywTL − yuBR

yvT L − yuBR

(xvT L − xuBR)

where xwT L = xw − width(w)/2 etc. This can be rewritten into the standard form.
The procedures for creating each type of constraint is given in Fig. 5.

If |P | denotes the number of path segments, the worst case complexity of Step 1
of project-x is O(|V |(|P | + log |V |)) and up to O(|V |) non-overlap constraints and
O(|P ||V |) topological constraints can be generated.

We now consider Step 3 of project-x. This is performed by procedure move (Fig. 6).
This updates the paths by moving the nodes horizontally from the initial feasible solution



Topology Preserving Constrained Graph Layout 237

procedure createStraightConstraint (s, w, y, TC)
% for segment s = uv and node w at scan pos y
p ← (y − yu)/(yv − yu)
xp ← xu + p(xv − xu)
leftOf ← xw < xp

corner ← if y < yw then if leftOf then BR else BL
else if leftOf then TR else TL

offset(w) ← width(w)/2 (-ve if leftOf )
g ← offset(u) + p(offset(v) − offset(u)) − offset(w)
TC ← TC ∪ {TopologyConstraint (straight , u, v, w, p, g, leftOf)}

procedure createBendConstraint (b, TC)
% for bend point b = (v, i), between segments ab and bc
if i is the centre of v then return
if existing bend constraint t on b then remove t
leftOf ← i ∈ {TR,BR}
if |ya − yb| > |yb − yc| then

p ← (yc − ya)/(yb − ya)
g ← offset(a) + p(offset(b) − offset(a)) − offset(c)
t ← TopologyConstraint (bend , a, b, c, p, g, leftOf)

else
p ← (ya − yc)/(yb − yc)
g ← offset(c) + p(offset(b) − offset(c)) − offset(a)
t ← TopologyConstraint (bend , c, b, a, p, g, leftOf)

TC ← TC ∪ {t}

Fig. 5. The procedures for creating straight constraints and bend constraints are used in both the
initial scan to set up topology constraints and by the procedure satisfy (Fig. 6). The function
TopologyConstraint creates a constraint of the form xw + g ≤ xu + p(xv − xu) if leftOf (or ≥
otherwise).

x for which the routing is correct towards x̄ detecting violated topology constraints as
they move. A violated bend constraint indicates that consecutive segments have become
aligned and can be replaced with a single segment. A violated straight constraint indicates
that a single segment needs be split into two new segments with a new bend point.

The maximum horizontal move γ that can be made along the line x = a + γ(b − a)
from a to b without violating topology constraint t is determined by solving the linear
equation associated with the constraint. For example, if t is the constraint xw+g ≤ xu+
p(xv−xu) then the maximum safe move is obtained by substituting xi = ai+γ(bi−ai)
for each node i and solving for γ:

γ =
α

β
=

aw − g − au + p(au − av)
bu − au + p(au − bu + bv − av) + aw − bw

The iterative process of finding the next such constraint and updating the paths P is
accomplished in the move procedure, Fig. 6.

Note that the satisfy procedure shown in Fig. 6, which satisfies a topology constraint
by either merging or splitting segments, must transfer or replace other bend and straight



238 T. Dwyer, K. Marriott, and M. Wybrow

procedure satisfy(t, TC,P )
TC ← TC \ {t}
if t is a bend constraint over points a, b, c then

% b = (v, i) is the bend point of t
replace segments ab and bc in P with new segment ac
createStraightConstraint (ac, v, by)

else % t is a straight constraint over u, v, w
replace segment uw in P with segments uv and vw
transfer straight constraints on uw to either uv or vw
createBendConstraint(u)
createBendConstraint(v)

procedure move(x, x̄, TC, P )
repeat

α ← β ← 1
t∗ ← None
for t ∈ TC

% t is a Topology Constraint over u, v, w with constants p, g
a ← aw − g − au + p(au − av)
b ← bu − au + p(au − bu + bv − av) + aw − bw

if aβ < αb then
α ← a, β ← b, t∗ ← t

x ← x + α
β
(x̄ − x)

if t∗ 	= None then satisfy(t, TC, P )
until α

β
= 1

Fig. 6. The procedure satisfy(t, TC, P ) satisfies a topology constraint t ∈ TC that is at equality,
by modifying P with a valid and tight system of segments. Procedure move(x, x̄, TC,P ) up-
dates the path P by moving nodes in one dimension from position x to x̄ to satisfy the topology
constraints TC.

constraints associated with the affected segments. The detail is not shown, but an ex-
ample of the difficult edge case of a horizontal path segment is shown in Fig. 7.

The move procedure used for updating the paths to preserve validity and topology
can also be thought of as a kind of active-set process, and as such it is difficult to prove
that it is polynomial. Again, however, please see our results section for actual running
times which indicate that running times scale fairly well with the number of topology
constraints generated. Note that the number of bend constraints is exactly the number
of bend points in P , and the number of straight constraints—while the worst case is
O(|P ||V |)—is limited by only generating constraints for segments which are visible in
the axis of movement from a given rectangle open/close.

Theorem 1. Let (x, y, P ) be a feasible layout with respect to the separation constraints
Cx and Cy in the x and y dimensions, respectively. Then project-x(x, y, P, d, Cx) returns
a new x position and paths (x′, P ′) s.t layout (x′, y, P ′) is feasible and preserves the
topology of (x, y, P ) while ensuring x′ is as close as possible to the desired position d.

Proof. (Sketch) Any feasible and topology preserving layout must satisfy SC = Cx ∪
Cno. Step 2 ensures that x′ is the projection of d onto SC, so it is the closest node



Topology Preserving Constrained Graph Layout 239

Fig. 7. The result of each iteration of move is shown for a path with a horizontal segment. The
iterations progress from left to right. The node v is required to move to the right relative to the
other nodes. The four central nodes are shown slightly separated for clarity, but we assume that the
boundaries of these nodes are actually touching—hence creating, initially, a horizontal segment.
The small circles represent bend points, while the ‘-’s represent straight topology constraints.
Note that, to properly preserve topology as the segments are split to satisfy a straight constraint,
the remaining straight constraints must be transferred to the correct sub-segments.

position that satisfies SC. Furthermore, one can prove by induction that the satisfy
procedure returns updated paths P ′ that are topology preserving, tight and valid.

6 Finding a Feasible Topology

We can apply our topology preserving layout adjustment to a layout obtained by any
graph drawing algorithm, assuming the generated layout is feasible as defined in §3.
Although not the primary focus of this paper we have also developed an algorithm to
find an initial feasible layout. This has two main steps:
(1) Perform standard stress majorization to find an initial position for the nodes. A

position for the nodes satisfying the constraints is found by projecting this position
on to the user specified separation constraints and then using a greedy heuristic to
satisfy the non-overlap constraints and cluster containment constraints. We use the
approach sketched in [4].

(2) Edge routing is performed using the incremental poly-line connector routing library
libavoid [16] to compute poly-line routes for each edge, which minimise edge
length and amount of bend. An initial cluster boundary is obtained by taking the
convex hull of the nodes in the cluster.

We note that the edge routing library has been extended to handle clusters and finds
routes for edges that do not unnecessarily pass through clusters. It also performs “nudg-
ing” on the final routes to separate paths with shared sub-routes.

7 Experimental Results

Table 1 gives some indicative run-times on various size graphs for finding an initial
layout using the two-step algorithm given above, then using the topology-preserving
constrained graph layout algorithm to find a locally optimal layout. The topology-
preserving constrained graph layout algorithm1 is quite fast with less than two seconds

1 Implemented as part of the Adaptagrams project. http://adaptagrams.sf.net/

http://adaptagrams.sf.net/


240 T. Dwyer, K. Marriott, and M. Wybrow

Table 1. Indicative running times for layout on an average (1GHz) PC for various size randomly
generated directed networks with constraints imposing downward pointing edges. All times are
in seconds.

|V | |E| Feasible layout Optimise Total
Step 1 Step 2

49 51 0.08 0.11 0.06 0.17
93 105 0.22 0.50 0.24 0.74
128 144 0.51 1.02 0.55 1.57
144 156 0.92 1.31 0.45 1.76
169 195 0.83 1.97 0.82 2.79
199 238 1.31 2.94 1.45 4.39
343 487 2.65 13.94 1.89 15.83

For each graph we give the number of nodes
and edges. The number of separation constraints
imposing downward edges is |E|. We give the
time to find an initial feasible layout (Step 1
and Step 2) from a random starting configura-
tion; and then to optimise the result using the
topology preserving constrained graph layout al-
gorithm. Optimisation algorithms were set to
terminate when the change in P -stress or stress
was < 10−5.

required to layout networks of around 350 nodes. We have found that the main cost
for each iteration is computation of the descent vector and step size. We also note that
our experience with the algorithm in interactive applications is that it provides real-time
updating of layout for graphs with up to 100 nodes.

Computing an initial layout is more expensive, and the dominating cost in finding
the initial layout is finding the initial connector routing.

8 Conclusion

We have presented a constrained graph layout algorithm that preserves the topology of the
initial layout. It supports network diagrams with poly-line connectors and arbitrary node
clusters. It ensures that nodes do not overlap and that additional placement constraints
on the layout remain satisfied. The algorithm is fast enough to support real-time layout
of networks with up to 100 nodes in two dynamic graph layout applications we have
developed: a network diagram authoring tool and a network diagram browser. While the
primary motivation for our development of the algorithm was to support dynamic layout
it can also be used to improve layouts generated by other graph layout techniques.

One of the strengths of the algorithm is that it can be straightforwardly modified
to work with other goal function, so long as the second derivative is computable and
the goal function is bend-point invariant. We plan to explore other goal functions. We
also plan to explore generalising the algorithm to handle arbitrary linear constraints, not
only separation constraints. As part of this we plan to modify the algorithm to perform
minimization in both dimensions at once, rather than separately.

References

1. Bertault, F.: A force-directed algorithm that preserves edge crossing properties. In: Kra-
tochvı́l, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 351–358. Springer, Heidelberg (1999)

2. Bridgeman, S.S., Fanto, J., Garg, A., Tamassia, R., Vismara, L.: InteractiveGiotto: An al-
gorithm for interactive orthogonal graph drawing. In: DiBattista, G. (ed.) GD 1997. LNCS,
vol. 1353, pp. 303–308. Springer, Heidelberg (1997)



Topology Preserving Constrained Graph Layout 241

3. Dwyer, T., Koren, Y., Marriott, K.: Drawing directed graphs using quadratic programming.
IEEE Transactions on Visualization and Computer Graphics 12(4), 536–548 (2006)

4. Dwyer, T., Koren, Y., Marriott, K.: IPSep-CoLa: An incremental procedure for separa-
tion constraint layout of graphs. IEEE Transactions on Visualization and Computer Graph-
ics 12(5), 821–828 (2006)

5. Dwyer, T., Marriott, K., Wybrow, M.: Dunnart: A constraint-based network diagram author-
ing tool. In: GD 2008. LNCS, vol. 5417. Springer, Heidelberg (to appear, 2009)

6. Dwyer, T., Marriott, K., Wybrow, M.: Exploration of networks using overview+detail with
constraint-based cooperative layout. IEEE Transactions on Visualization and Computer
Graphics (InfoVis 2008) (to appear 2008)

7. Dwyer, T., Marriott, K., Wybrow, M.: Integrating edge routing into force-directed layout. In:
Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 8–19. Springer, Heidelberg
(2007)

8. Eiglsperger, M., Fekete, S.P., Klau, G.W.: Drawing Graphs: Methods and Models, chap. Or-
thogonal graph drawing, pp. 121–171. Springer, London (2001)

9. Frishman, Y., Tal, A.: Online dynamic graph drawing. In: Eurographics/IEEE-VGTC Symp.
on Visualization. Eurographics Association (2007)

10. Gansner, E., Koren, Y., North, S.: Graph drawing by stress majorization. In: Pach, J. (ed.)
GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)

11. Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph. In: SODA
2001: Proc. of the 12th Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 246–255.
Society for Industrial and Applied Mathematics (2001)

12. He, W., Marriott, K.: Constrained graph layout. Constraints 3, 289–314 (1998)
13. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information

Processing Letters 31, 7–15 (1989)
14. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. Journal

of Visual Languages and Computing 6(2), 183–210 (1995)
15. North, S.C., Woodhull, G.: Online hierarchical graph drawing. In: Mutzel, P., Jünger, M.,

Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 232–246. Springer, Heidelberg (2002)
16. Wybrow, M., Marriott, K., Stuckey, P.J.: Incremental connector routing. In: Healy, P.,

Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 446–457. Springer, Heidelberg (2006)


	Topology Preserving Constrained Graph Layout
	Introduction
	Related Work
	Problem Definition
	Minimising P-Stress Using Gradient Projection
	Topology Preserving Projection
	Finding a Feasible Topology
	Experimental Results
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




