Skip to main content

Spectral Mixture Analysis for Ground-Cover Mapping

  • Chapter
  • First Online:
Innovations in Remote Sensing and Photogrammetry

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

Monitoring of ground-cover is an important task for land management since it has been linked to indicators of soil loss, biodiversity, and pasture production. Ground-cover is an indicator adopted by Queensland natural resource and catchment management groups. However, accurate spatial estimation of ground-cover is confounded by varying cover types, cover greenness and soil colour.

This research reports on ground-cover mapping based on spectral mixture analysis (SMA) of LANDSAT satellite imagery. Estimates of green and senescent vegetation and soil fractions are derived from iterative SMA. Correlations with field data are form SMA iterations are discussed with r2 values of 0.78 and 0.69 respectively for bare ground estimates over black soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, J.B., Sabol, D.E., Kapos, V., Filho, R.A., Roberts, D.A., Smith, M.O., and Gillspie, A.R. (1995). Classification of Multispectral Images Based on Fractions of Endmembers: Application to Land-Cover Change in the Brazilian Amazon. Remote Sensing of Environment, 52, 137–154

    Article  Google Scholar 

  • Adams, J.B., Smith, M.O., and Johnson, P.E. (1986). Spectral Mixture Modelling: A New Analysis of rock and Soil Types at the Viking Lander 1 Site. Journal of Geophysical Research, 91, 8098–8112

    Article  Google Scholar 

  • Armston, J.D., Danaher, T.J., Goulevitch, B.M., and Byrne, M.I. (2002). Geometric correction of LANDSAT MSS, TM, and ETM+ imagery for mapping of woody vegetation cover and change detection in Queensland. In, 11the ARSPC conference. Brisbane

    Google Scholar 

  • Brady, W.W., Mitchell, J. E., Bonham, C.D., and Cook, J.W. (1995). Assessing the Power of the Point-Line Transect to Monitor Changes in Plant Basal Cover. Journal of Range Management, 48, 187–190

    Article  Google Scholar 

  • Cihlar, J. (2000). Land cover mapping of large areas from satellites: status and research priorities. International Journal of Remote Sensing, 21, 1093––1114

    Article  Google Scholar 

  • Danaher, T. (2002). An empirical BRDF correction for LANDSAT TM and ETM+ imagery. In, 11th Australasian Remote Sensing and Photogrammetry conference. Brisbane: ARSPC

    Google Scholar 

  • de Vries, C., T., D., Denham, R., Scarth, P., and Phinn, S. (2007). An operational radiometric calibration procedure for the Landsat sensors based on pseudo-invariant target sites. Remote Sensing of Environment, 107, 414–429

    Article  Google Scholar 

  • García-Haro, F., Gilabert, M., and Meliá, J. (1996). Linear spectral mixture modelling to estimate vegetation amount from optical spectral data. International Journal of Remote Sensing, 17, 3373–3400

    Article  Google Scholar 

  • Gill, T., and Phinn, S. (2008). Estimates of bare ground and vegetation cover from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) short-wave-infrared reflectance imagery. Journal of Applied Remote Sensing, 2, 023511

    Article  Google Scholar 

  • Hill, J. (2000). Assessment of Semiarid Lands: Monitoring Dryland Ecosystems through Remote Sensing. In R.A. Meyers (Ed.), Encyclopedia of Analytical chemistry - Instrumentation and Applications. Encyclopedia of Analytical chemistry, Chichester (pp. 8769–8794)

    Google Scholar 

  • Hurcom, S.J., and Harrison, A.R. (1998). The NDVI and spectral decomposition for semi-arid vegetation abundance estimation. International Journal of Remote Sensing, 19, 3109–3125

    Article  Google Scholar 

  • Jensen, J.R. (1996) Introductory Digital Image Processing: A Remote Sensing Perspective. 2nd Edition. New Jersey. Prentice-Hall

    Google Scholar 

  • Karfs, R., Chilcott, C., and Scarth, P. (2007). Land monitoring information for grazing management. In, Northern Beef Research Update Conference

    Google Scholar 

  • Roberts, D.A., Batista, G.T., Pereira, J.L.G., Waller, E.K., and Nelson, B.W. (1998). Change Identification Using Multitemporal Spectral Mixture Analysis: Eastern Amazonia. In, Remote Sensing Change Detection: Environmental Monitoring, Methods and Applications, Ann Arbor Press, Chelsea, MI (pp. 137–161)

    Google Scholar 

  • RSI (2007). ENVI Online Help, Version 4.3.

    Google Scholar 

  • Scarth, P., Byrne, M., Danaher, T., Henry, B., Hassett, R., Carter, J., and Timmers, P. (2006). State of the paddock: monitoring condition and trend in groundcover across Queensland. In, 13th Australasian Remote Sensing Conference, November 2006,. Canberra

    Google Scholar 

  • Schmidt, M., and Schoettker, B. (2004). Sub-pixel analysis in combination with knowledge based decision rules to optimise a land cover classification. In R. Goossens (Ed.), Remote Sensing in Transition (pp. 53-59). Rotterdam: Millpress

    Google Scholar 

  • Smith, M.O., Ustin, S., Adams, J.B., and Gillespie, A.R. (1996). Vegetation in deserts I: A regional Measure of Abundance from Multispectral Images. International Journal of Remote Sensing, 17, 1031–1058

    Article  Google Scholar 

  • Tucker, C.J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150

    Article  Google Scholar 

  • Van Leeuwen, W., and Huete, A.R. (1996). Effects of Standing Litter on the Biophysical Interpretation of Plant Canopies with Spectral Indices. Remote Sensing of Environment, 55, 123–138

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jeff Milne (formerly with NRW, Indooroopilly), Gorge Bourne and Cameron Dougall (NRW, Emerald) for their help and useful comment during the fieldwork and thereafter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, M., Scarth, P. (2009). Spectral Mixture Analysis for Ground-Cover Mapping. In: Jones, S., Reinke, K. (eds) Innovations in Remote Sensing and Photogrammetry. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93962-7_27

Download citation

Publish with us

Policies and ethics