Skip to main content

Humanized SCID Mouse Models for Biomedical Research

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 324))

There is a growing need for effective animal models to carry out experimental studies on human hematopoietic and immune systems without putting individuals at risk. Progress in development of small animal models for the in vivo investigation of human hematopoiesis and immunity has seen three major breakthroughs over the last three decades. First, CB17- Prkdc scid (abbreviated CB17- scid ) mice were discovered in 1983, and engraftment of these mice with human fetal tissues (SCID-Hu model) and peripheral blood mononuclear cells (Hu-PBL-SCID model) was reported in 1988. Second, NOD- scid mice were developed and their enhanced ability to engraft with human hematolymphoid tissues as compared with CB17- scid mice was reported in 1995. NOD- scid mice have been the “gold standard” for studies of human hematolymphoid engraftment in small animal models over the last 10 years. Third, immunodeficient mice bearing a targeted mutation in the IL-2 receptor common gamma chain ( IL2rγ null ) were developed independently by four groups between 2002 and 2005, and a major increase in the engraftment and function of human hematolymphoid cells as compared with NOD- scid mice has been reported. These new strains of immunodeficient IL2rg rγ null mice are now being used for studies in human hematopoiesis, innate and adaptive immunity, autoimmunity, infectious diseases, cancer biology, and regenerative medicine. In this chapter, we discuss the current state of development of these strains of mice, the remaining deficiencies, and how approaches used to increase the engraftment and function of human hematolymphoid cells in CB17- scid mice and in previous models based on NOD- scid mice may enhance human hematolymphoid engraftment and function in NOD- scid IL2r γ null mice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ailles LE, Gerhard B, Kawagoe H and Hogge DE (1999) Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood 94:1761–72.

    PubMed  CAS  Google Scholar 

  2. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–8.

    Article  PubMed  CAS  Google Scholar 

  3. Angelopoulou M, Novelli E, Grove JE, Rinder HM, Civin C, Cheng L and Krause DS (2003) Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp Hematol 31:413–20.

    Article  PubMed  CAS  Google Scholar 

  4. Araki H, Mahmud N, Milhem M, Nunez R, Xu M, Beam CA and Hoffman R (2006) Expansion of human umbilical cord blood SCID-repopulating cells using chromatin-modifying agents. Exp Hematol 34:140–9.

    Article  PubMed  CAS  Google Scholar 

  5. Auffray I, Dubart A, Izac B, Vainchenker W and Coulombel L (1994) A murine stromal cell line promotes the proliferation of the human factor-dependent leukemic cell line UT-7. Exp Hematol 22:417–24.

    PubMed  CAS  Google Scholar 

  6. Baenziger S, Tussiwand R, Schlaepfer E, Mazzucchelli L, Heikenwalder M, Kurrer MO, Behnke S, Frey J, Oxenius A, Joller H, Aguzzi A, Manz MG and Speck RF (2006) Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2−/−gamma c−/− mice. Proc Natl Acad Sci USA 103:15951–6.

    Article  PubMed  CAS  Google Scholar 

  7. Baiocchi RA, Ward JS, Carrodeguas L, Eisenbeis CF, Peng R, Roychowdhury S, Vourganti S, Sekula T, O’Brien M, Moeschberger M and Caligiuri MA (2001) GM-CSF and IL-2 induce specific cellular immunity and provide protection against Epstein-Barr virus lymphoproliferative disorder. J Clin Invest 108:887–94.

    PubMed  CAS  Google Scholar 

  8. Banuelos SJ, Shultz LD, Greiner DL, Burzenski LM, Gott B, Lyons BL, Rossini AA and Appel MC (2004) Rejection of human islets and human HLA-A2.1 transgenic mouse islets by alloreactive human lymphocytes in immunodeficient NOD-scid and NOD-Rag1nullPrf1null mice. Clin Immunol 112:273–283.

    Article  PubMed  CAS  Google Scholar 

  9. Bennett CL, van Rijn E, Jung S, Inaba K, Steinman RM, Kapsenberg ML and Clausen BE (2005) Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J Cell Biol 169:569–76.

    Article  PubMed  CAS  Google Scholar 

  10. Berges BK, Wheat WH, Palmer BE, Connick E and Akkina R (2006) HIV-1 infection and CD4 T cell depletion in the humanized Rag2−/−gamma c−/− (RAG-hu) mouse model. Retrovirology 3:76.

    Article  PubMed  Google Scholar 

  11. Bock TA, Orlic D, Dunbar CE, Broxmeyer HE and Bodine DM (1995) Improved engraftment of human hematopoietic cells in severe combined immunodeficient (SCID) mice carrying human cytokine transgenes. J Exp Med 182:2037–43.

    Article  PubMed  CAS  Google Scholar 

  12. Boiron JM, Dazey B, Cailliot C, Launay B, Attal M, Mazurier F, McNiece IK, Ivanovic Z, Caraux J, Marit G and Reiffers J (2006) Large-scale expansion and transplantation of CD34+ hematopoietic cells: in vitro and in vivo confirmation of neutropenia abrogation related to the expansion process without impairment of the long-term engraftment capacity. Transfusion 46:1934–42.

    Article  PubMed  Google Scholar 

  13. Bornstein R, Flores AI, Montalban MA, del Rey MJ, de la Serna J and Gilsanz F (2005) A modified cord blood collection method achieves sufficient cell levels for transplantation in most adult patients. Stem Cells 23:324–34.

    Article  PubMed  Google Scholar 

  14. Bosma GC, Custer RP and Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–30.

    Article  PubMed  CAS  Google Scholar 

  15. Brenner S, Whiting-Theobald N, Kawai T, Linton GF, Rudikoff AG, Choi U, Ryser MF, Murphy PM, Sechler JM and Malech HL (2004) CXCR4-transgene expression significantly improves marrow engraftment of cultured hematopoietic stem cells. Stem Cells 22:1128–33.

    Article  PubMed  CAS  Google Scholar 

  16. Camacho RE, Wnek R, Shah K, Zaller DM, O’Reilly RJ, Collins N, Fitzgerald-Bocarsly P and Koo GC (2004) Intra-thymic/splenic engraftment of human T cells in HLA-DR1 transgenic NOD/scid mice. Cell Immunol 232:86–95.

    Article  PubMed  CAS  Google Scholar 

  17. Cao T and Leroux-Roels G (2000) Antigen-specific T cell responses in human peripheral blood leucocyte (hu-PBL)-mouse chimera conditioned with radiation and an antibody directed against the mouse IL-2 receptor beta-chain. Clin Exp Immunol 122:117–23.

    Article  PubMed  CAS  Google Scholar 

  18. Carballido JM, Schols D, Namikawa R, Zurawski S, Zurawski G, Roncarolo MG and de Vries JE (1995) IL-4 induces human B cell maturation and IgE synthesis in SCID-hu mice. Inhibition of ongoing IgE production by in vivo treatment with an IL-4/IL-13 receptor antagonist. J Immunol 155:4162–70.

    PubMed  CAS  Google Scholar 

  19. Cashman JD and Eaves CJ (1999) Human growth factor-enhanced regeneration of transplantable human hematopoietic stem cells in nonobese diabetic/severe combined immunodeficient mice. Blood 93:481–7.

    PubMed  CAS  Google Scholar 

  20. Cha JH, Chang MY, Richardson JA and Eidels L (2003) Transgenic mice expressing the diphtheria toxin receptor are sensitive to the toxin. Mol Microbiol 49:235–40.

    Article  PubMed  CAS  Google Scholar 

  21. Chan SL, Choi M, Wnendt S, Kraus M, Teng E, Leong HF and Merchav S (2007) Enhanced in vivo homing of uncultured and selectively amplified cord blood CD34+ cells by cotransplantation with cord blood-derived unrestricted somatic stem cells. Stem Cells 25:529–36.

    Article  PubMed  CAS  Google Scholar 

  22. Christianson SW, Greiner DL, Schweitzer IB, Gott B, Beamer GL, Schweitzer PA, Hesselton RA and Shultz LD (1996) Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human T-lymphoblastoid leukemia cells in C57BL/6J-scid mice and in C57BL/6J-scid bg mice. Cell Immunol 171:186–199.

    PubMed  CAS  Google Scholar 

  23. Christianson SW, Greiner DL, Hesselton RA, Leif JH, Wagar EJ, Schweitzer IB, Rajan TV, Gott B, Roopenian DC and Shultz LD (1997) Enhanced human CD4+ T cell engraftment in beta2-microglobulin-deficient NOD-scid mice. J Immunol 158:3578–86.

    PubMed  CAS  Google Scholar 

  24. Chute JP, Saini AA, Chute DJ, Wells MR, Clark WB, Harlan DM, Park J, Stull MK, Civin C and Davis TA (2002) Ex vivo culture with human brain endothelial cells increases the SCID-repopulating capacity of adult human bone marrow. Blood 100:4433–9.

    Article  PubMed  CAS  Google Scholar 

  25. Dao MA, Shah AJ, Crooks GM and Nolta JA (1998) Engraftment and retroviral marking of CD34+ and CD34+CD38− human hematopoietic progenitors assessed in immune-deficient mice. Blood 91:1243–55.

    PubMed  CAS  Google Scholar 

  26. Delaney C, Varnum-Finney B, Aoyama K, Brashem-Stein C and Bernstein ID (2005) Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood 106:2693–9.

    Article  PubMed  CAS  Google Scholar 

  27. Di Ianni M, Papa BD, De Ioanni M, Terenzi A, Sportoletti P, Moretti L, Falzetti F, Gaozza E, Zei T, Spinozzi F, Bagnis C, Mannoni P, Bonifacio E, Falini B, Martelli MF and Tabilio A (2005) Interleukin 7-engineered stromal cells: a new approach for hastening naive T cell recruitment. Hum Gene Ther 16:752–64.

    Article  PubMed  CAS  Google Scholar 

  28. Dick JE and Lapidot T (2005) Biology of normal and acute myeloid leukemia stem cells. Int J Hematol 82:389–96.

    Article  PubMed  CAS  Google Scholar 

  29. DiSanto JP, Muller W, Guy-Grand D, Fischer A and Rajewsky K (1995) Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci USA 92:377–81.

    Article  PubMed  CAS  Google Scholar 

  30. Dravid G and Rao SG (2002) Ex vivo expansion of stem cells from umbilical cord blood: expression of cell adhesion molecules. Stem Cells 20:183–9.

    Article  PubMed  CAS  Google Scholar 

  31. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R and Iredale JP (2005) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 115:56–65.

    PubMed  CAS  Google Scholar 

  32. Faulkner L, Borysiewicz LK and Man S (1998) The use of human leucocyte antigen class I transgenic mice to investigate human immune function. J Immunol Methods 221:1–16.

    Article  PubMed  CAS  Google Scholar 

  33. Fogh J, Fogh JM and Orfeo T (1977) One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 59:221–6.

    PubMed  CAS  Google Scholar 

  34. Fraser CC, Chen BP, Webb S, van Rooijen N and Kraal G (1995) Circulation of human hematopoietic cells in severe combined immunodeficient mice after Cl2MDP-liposome-mediated macrophage depletion. Blood 86:183–92.

    PubMed  CAS  Google Scholar 

  35. Friese MA, Jensen LT, Willcox N and Fugger L (2006) Humanized mouse models for organ-specific autoimmune diseases. Curr Opin Immunol 18:704–9.

    Article  PubMed  CAS  Google Scholar 

  36. Fu YX, Huang G, Matsumoto M, Molina H and Chaplin DD (1997) Independent signals regulate development of primary and secondary follicle structure in spleen and mesenteric lymph node. Proc Natl Acad Sci USA 94:5739–43.

    Article  PubMed  CAS  Google Scholar 

  37. Gammaitoni L, Bruno S, Sanavio F, Gunetti M, Kollet O, Cavalloni G, Falda M, Fagioli F, Lapidot T, Aglietta M and Piacibello W (2003) Ex vivo expansion of human adult stem cells capable of primary and secondary hemopoietic reconstitution. Exp Hematol 31:261–70.

    Article  PubMed  CAS  Google Scholar 

  38. Gimeno R, Weijer K, Voordouw A, Uittenbogaart CH, Legrand N, Alves NL, Wijnands E, Blom B and Spits H (2004) Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2−/− gammac−/− mice: functional inactivation of p53 in developing T cells. Blood 104:3886–93.

    Article  PubMed  CAS  Google Scholar 

  39. Gotoh M, Takasu H, Harada K and Yamaoka T (2002) Development of HLA-A2402/K(b) transgenic mice. Int J Cancer 100:565–70.

    Article  PubMed  CAS  Google Scholar 

  40. Grassinger J, Mueller G, Zaiss M, Kunz-Schughart LA, Andreesen R and Hennemann B (2006) Differentiation of hematopoietic progenitor cells towards the myeloid and B-lymphoid lineage by hepatocyte growth factor (HGF) and thrombopoietin (TPO) together with early acting cytokines. Eur J Haematol 77:134–44.

    Article  PubMed  CAS  Google Scholar 

  41. Greiner DL, Hesselton RA and Shultz LD (1998) SCID mouse models of human stem cell engraftment. Stem Cells 16:166–77.

    Article  PubMed  CAS  Google Scholar 

  42. Greiner DL and Shultz LD (1998) The Use of NOD/LtSz-scid/scid mice in biomedical research. In: Leiter E and Atkinson M (eds) NOD Mice and Related Strains: Research Applications in Diabetes, AIDS, Cancer and Other Diseases. Landes Bioscience, Austin, TX.

    Google Scholar 

  43. Guenechea G, Segovia JC, Albella B, Lamana M, Ramirez M, Regidor C, Fernandez MN and Bueren JA (1999) Delayed engraftment of nonobese diabetic/severe combined immunodeficient mice transplanted with ex vivo-expanded human CD34+ cord blood cells. Blood 93:1097–105.

    PubMed  CAS  Google Scholar 

  44. Hesselton RM, Greiner DL, Mordes JP, Rajan TV, Sullivan JL and Shultz LD (1995) High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to HIV-1 infection in NOD/LtSz-scid/scid mice. J Inf Dis 172:774–782.

    Google Scholar 

  45. Hidalgo A and Frenette PS (2005) Enforced fucosylation of neonatal CD34+ cells generates selectin ligands that enhance the initial interactions with microvessels but not homing to bone marrow. Blood 105:567–75.

    Article  PubMed  CAS  Google Scholar 

  46. Hudson WA, Li Q, Le C and Kersey JH (1998) Xenotransplantation of human lymphoid malignancies is optimized in mice with multiple immunologic defects. Leukemia 12:2029–33.

    Article  PubMed  CAS  Google Scholar 

  47. in ‘t Anker PS, Noort WA, Kruisselbrink AB, Scherjon SA, Beekhuizen W, Willemze R, Kanhai HH and Fibbe WE (2003) Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34+ cells in NOD/SCID mice. Exp Hematol 31:881–9.

    Article  PubMed  Google Scholar 

  48. Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, Watanabe T, Akashi K, Shultz LD and Harada M (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnull mice. Blood 106:1565–73.

    Article  PubMed  CAS  Google Scholar 

  49. Ishikawa F, Shimazu H, Shultz LD, Fukata M, Nakamura R, Lyons B, Shimoda K, Shimoda S, Kanemaru T, Nakamura K, Ito H, Kaji Y, Perry AC and Harada M (2006) Purified human hematopoietic stem cells contribute to the generation of cardiomyocytes through cell fusion. FASEB J 20:950–2.

    Article  PubMed  CAS  Google Scholar 

  50. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T and Nakahata T (2002) NOD/SCID/γc null mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100:3175–82.

    Article  PubMed  CAS  Google Scholar 

  51. Jacobs H, Krimpenfort P, Haks M, Allen J, Blom B, Demolliere C, Kruisbeek A, Spits H and Berns A (1999) PIM1 reconstitutes thymus cellularity in interleukin 7- and common gamma chain-mutant mice and permits thymocyte maturation in Rag- but not CD3gamma-deficient mice. J Exp Med 190:1059–68.

    Article  PubMed  CAS  Google Scholar 

  52. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F, Pamer EG, Littman DR and Lang RA (2002) In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:211–20.

    Article  PubMed  CAS  Google Scholar 

  53. Kapp U, Bhatia M, Bonnet D, Murdoch B and Dick JE (1998) Treatment of non-obese diabetic (NOD)/Severe-combined immunodeficient mice (SCID) with flt3 ligand and interleukin-7 impairs the B-lineage commitment of repopulating cells after transplantation of human hematopoietic cells. Blood 92:2024–31.

    PubMed  CAS  Google Scholar 

  54. Kim SJ, Cho HH, Kim YJ, Seo SY, Kim HN, Lee JB, Kim JH, Chung JS and Jung JS (2005) Human adipose stromal cells expanded in human serum promote engraftment of human peripheral blood hematopoietic stem cells in NOD/SCID mice. Biochem Biophys Res Commun 329:25–31.

    Article  PubMed  CAS  Google Scholar 

  55. Kobari L, Pflumio F, Giarratana M, Li X, Titeux M, Izac B, Leteurtre F, Coulombel L and Douay L (2000) In vitro and in vivo evidence for the long-term multilineage (myeloid, B, NK, and T) reconstitution capacity of ex vivo expanded human CD34+ cord blood cells. Exp Hematol 28:1470–80.

    Article  PubMed  CAS  Google Scholar 

  56. Kollet O, Aviram R, Chebath J, ben-Hur H, Nagler A, Shultz L, Revel M and Lapidot T (1999) The soluble interleukin-6 (IL-6) receptor/IL-6 fusion protein enhances in vitro maintenance and proliferation of human CD34+CD38−/low cells capable of repopulating severe combined immunodeficiency mice. Blood 94:923–31.

    PubMed  CAS  Google Scholar 

  57. Krimpenfort P, Rudenko G, Hochstenbach F, Guessow D, Berns A and Ploegh H (1987) Crosses of two independently derived transgenic mice demonstrate functional complementation of the genes encoding heavy (HLA-B27) and light (beta2-microglobulin) chains of HLA class I antigens. EMBO J 6:1673–6.

    PubMed  CAS  Google Scholar 

  58. Lapenta C, Santini SM, Spada M, Donati S, Urbani F, Accapezzato D, Franceschini D, Andreotti M, Barnaba V and Belardelli F (2006) IFN-alpha-conditioned dendritic cells are highly efficient in inducing cross-priming CD8+ T cells against exogenous viral antigens. Eur J Immunol 36:2046–60.

    Article  PubMed  CAS  Google Scholar 

  59. Lapidot T, Pflumio F, Deodens M, Murdoch B, Williams DE and Dick JE (1992) Cytokine stimulation of multi lineage hematopoiesis from immature human cells engrafted in SCID mice. Science 255:1137–1141.

    Article  PubMed  CAS  Google Scholar 

  60. Leonard WJ (1996) Dysfunctional cytokine receptor signaling in severe combined immunodeficiency. J Investig Med 44:304–11.

    PubMed  CAS  Google Scholar 

  61. Lewis ID, Almeida-Porada G, Du J, Lemischka IR, Moore KA, Zanjani ED and Verfaillie CM (2001) Umbilical cord blood cells capable of engrafting in primary, secondary, and tertiary xenogeneic hosts are preserved after ex vivo culture in a noncontact system. Blood 97:3441–9.

    Article  PubMed  CAS  Google Scholar 

  62. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF and Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–7.

    Article  PubMed  CAS  Google Scholar 

  63. Li K, Chuen CK, Lee SM, Law P, Fok TF, Ng PC, Li CK, Wong D, Merzouk A, Salari H, Gu GJ and Yuen PM (2006) Small peptide analogue of SDF-1alpha supports survival of cord blood CD34+ cells in synergy with other cytokines and enhances their ex vivo expansion and engraftment into nonobese diabetic/severe combined immunodeficient mice. Stem Cells 24:55–64.

    Article  PubMed  CAS  Google Scholar 

  64. Liu J, Purdy LE, Rabinovitch S, Jevnikar AM and Elliott JF (1999) Major DQ8-restricted T-cell epitopes for human GAD65 mapped using human CD4, DQA1*0301, DQB1*0302 transgenic IAnull NOD mice. Diabetes 48:469–77.

    Article  PubMed  CAS  Google Scholar 

  65. Lowry PA, Shultz LD, Greiner DL, Hesselton RM, Kittler EL, Tiarks CY, Rao SS, Reilly J, Leif JH, Ramshaw H, Stewart FM and Quesenberry PJ (1996) Improved engraftment of human cord blood stem cells in NOD/LtSz- scid/scid mice after irradiation or multiple-day injections into unirradiated recipients. Biol Blood Marrow Transplant 2:15–23.

    PubMed  CAS  Google Scholar 

  66. Ma N, Ladilov Y, Kaminski A, Piechaczek C, Choi YH, Li W, Steinhoff G and Stamm C (2006) Umbilical cord blood cell transplantation for myocardial regeneration. Transplant Proc 38:771–3.

    Article  PubMed  CAS  Google Scholar 

  67. Mangalam A, Rodriguez M and David C (2006) Role of MHC class II expressing CD4+ T cells in proteolipid protein91–110-induced EAE in HLA-DR3 transgenic mice. Eur J Immunol 36:3356–70.

    Article  PubMed  CAS  Google Scholar 

  68. Matsumura H, Hasuwa H, Inoue N, Ikawa M and Okabe M (2004) Lineage-specific cell disruption in living mice by Cre-mediated expression of diphtheria toxin A chain. Biochem Biophys Res Commun 321:275–9.

    Article  PubMed  CAS  Google Scholar 

  69. May KF, Jr., Roychowdhury S, Bhatt D, Kocak E, Bai XF, Liu JQ, Ferketich AK, Martin EW, Jr., Caligiuri MA, Zheng P and Liu Y (2005) Anti-human CTLA-4 monoclonal antibody promotes T-cell expansion and immunity in a hu-PBL-SCID model: a new method for preclinical screening of costimulatory monoclonal antibodies. Blood 105:1114–20.

    Article  PubMed  CAS  Google Scholar 

  70. Mazurier F, Doedens M, Gan OI and Dick JE (2003) Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med 9:959–63.

    Article  PubMed  CAS  Google Scholar 

  71. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M and Weissman IL (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241:1632–9.

    Article  PubMed  CAS  Google Scholar 

  72. McKenzie JL, Gan OI, Doedens M and Dick JE (2005) Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood 106:1259–61.

    Article  PubMed  CAS  Google Scholar 

  73. Mercurio AM, Schwarting GA and Robbins PW (1984) Glycolipids of the mouse peritoneal macrophage. J. Exp. Med. 160:1114–1125.

    Article  PubMed  CAS  Google Scholar 

  74. Mosier DE, Gulizia RJ, Baird SM and Wilson DB (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335:256–9.

    Article  PubMed  CAS  Google Scholar 

  75. Murphy WJ, Durum SK and Longo DL (1992) Human growth hormone promotes engraftment of murine or human T cells in severe combined immunodeficient mice. Proc Natl Acad Sci USA 89:4481–5.

    Article  PubMed  CAS  Google Scholar 

  76. Murphy WJ, Funakoshi S, Fanslow WC, Rager HC, Taub DD and Longo DL (1999) CD40 stimulation promotes human secondary immunoglobulin responses in HuPBL-SCID chimeras. Clin Immunol 90:22–7.

    Article  PubMed  CAS  Google Scholar 

  77. Nabozny GH, Baisch JM, Cheng S, Cosgrove D, Griffiths MM, Luthra HS and David CS (1996) HLA-DQ8 transgenic mice are highly susceptible to collagen-induced arthritis: a novel model for human polyarthritis. J Exp Med 183:27–37.

    Article  PubMed  CAS  Google Scholar 

  78. Nakamura T, Miyakawa Y, Miyamura A, Yamane A, Suzuki H, Ito M, Ohnishi Y, Ishiwata N, Ikeda Y and Tsuruzoe N (2006) A novel nonpeptidyl human c-Mpl activator stimulates human megakaryopoiesis and thrombopoiesis. Blood 107:4300–7.

    Article  PubMed  CAS  Google Scholar 

  79. Napolitano LA, Stoddart CA, Hanley MB, Wieder E and McCune JM (2003) Effects of IL-7 on early human thymocyte progenitor cells in vitro and in SCID-hu Thy/Liv mice. J Immunol 171:645–54.

    PubMed  CAS  Google Scholar 

  80. Nicolini FE, Cashman JD, Hogge DE, Humphries RK and Eaves CJ (2004) NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia 18:341–7.

    Article  PubMed  CAS  Google Scholar 

  81. Noort WA, Kruisselbrink AB, in’t Anker PS, Kruger M, van Bezooijen RL, de Paus RA, Heemskerk MH, Lowik CW, Falkenburg JH, Willemze R and Fibbe WE (2002) Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34+ cells in NOD/SCID mice. Exp Hematol 30:870–8.

    Article  PubMed  Google Scholar 

  82. Ohbo K, Suda T, Hashiyama M, Mantani A, Ikebe M, Miyakawa K, Moriyama M, Nakamura M, Katsuki M, Takahashi K, Yamamura K and Sugamura K (1996) Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood 87:956–67.

    PubMed  CAS  Google Scholar 

  83. Pardal R, Clarke MF and Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902.

    Article  PubMed  CAS  Google Scholar 

  84. Perez LE, Alpdogan O, Shieh JH, Wong D, Merzouk A, Salari H, O’Reilly RJ, van den Brink MR and Moore MA (2004) Increased plasma levels of stromal-derived factor-1 (SDF-1/CXCL12) enhance human thrombopoiesis and mobilize human colony-forming cells (CFC) in NOD/SCID mice. Exp Hematol 32:300–7.

    Article  PubMed  CAS  Google Scholar 

  85. Petersen JS, Marshall MO, Baekkeskov S, Hejnaes KR, Hoier-Madsen M and Dyrberg T (1993) Transfer of type 1 (insulin-dependent) diabetes mellitus associated autoimmunity to mice with severe combined immunodeficiency (SCID). Diabetologia 36:510–5.

    Article  PubMed  CAS  Google Scholar 

  86. Pflumio F, Izac B, Katz A, Shultz LD, Vainchenker W and Coulombel L (1996) Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood 88:3731–40.

    PubMed  CAS  Google Scholar 

  87. Piacibello W, Sanavio F, Severino A, Dane A, Gammaitoni L, Fagioli F, Perissinotto E, Cavalloni G, Kollet O, Lapidot T and Aglietta M (1999) Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34+ cord blood cells after ex vivo expansion: evidence for the amplification and self-renewal of repopulating stem cells. Blood 93:3736–49.

    PubMed  CAS  Google Scholar 

  88. Pilarski LM and Belch AR (2002) Clonotypic myeloma cells able to xenograft myeloma to nonobese diabetic severe combined immunodeficient mice copurify with CD34+ hematopoietic progenitors. Clin Cancer Res 8:3198–204.

    PubMed  Google Scholar 

  89. Poznansky MC, Evans RH, Foxall RB, Olszak IT, Piascik AH, Hartman KE, Brander C, Meyer TH, Pykett MJ, Chabner KT, Kalams SA, Rosenzweig M and Scadden DT (2000). Efficient generation of human T cells from a tissue-engineered thymic organoid. Nat Biotechnol 18:729–34

    Article  PubMed  CAS  Google Scholar 

  90. Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, Kajstura J, Leri A and Anversa P (2002) Chimerism of the transplanted heart. N Engl J Med 346:5–15.

    Article  PubMed  Google Scholar 

  91. Raju R, Munn SR, Majoribanks C and David CS (1998) Islet cell autoimmunity in NOD mice transgenic for HLA-DQ8 and lacking I-Ag7. Transplant Proc 30:561.

    Article  PubMed  CAS  Google Scholar 

  92. Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G and Dazzi F (2007) Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 83:71–6.

    Article  PubMed  Google Scholar 

  93. Reya T, Morrison SJ, Clarke MF and Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–11.

    Article  PubMed  CAS  Google Scholar 

  94. Ringden O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lonnies H, Marschall HU, Dlugosz A, Szakos A, Hassan Z, Omazic B, Aschan J, Barkholt L and Le Blanc K (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81:1390–7.

    Article  PubMed  Google Scholar 

  95. Rollini P, Kaiser S, Faes-van’t Hull E, Kapp U and Leyvraz S (2004) Long-term expansion of transplantable human fetal liver hematopoietic stem cells. Blood 103:1166–70.

    Article  PubMed  CAS  Google Scholar 

  96. Roychowdhury S, Blaser BW, Freud AG, Katz K, Bhatt D, Ferketich AK, Bergdall V, Kusewitt D, Baiocchi RA and Caligiuri MA (2005) IL-15 but not IL-2 rapidly induces lethal xenogeneic graft-versus-host disease. Blood 106:2433–5.

    Article  PubMed  CAS  Google Scholar 

  97. Rozemuller H, Knaan-Shanzer S, Hagenbeek A, van Bloois L, Storm G and Martens AC (2004) Enhanced engraftment of human cells in RAG2/gammac double-knockout mice after treatment with CL2MDP liposomes. Exp Hematol 32:1118–25.

    Article  PubMed  CAS  Google Scholar 

  98. Samira S, Ferrand C, Peled A, Nagler A, Tovbin Y, Ben-Hur H, Taylor N, Globerson A and Lapidot T (2004) Tumor necrosis factor promotes human T-cell development in nonobese diabetic/severe combined immunodeficient mice. Stem Cells 22:1085–100.

    Article  PubMed  CAS  Google Scholar 

  99. Sandhu J, Shpitz B, Gallinger S and Hozumi N (1994) Human primary immune response in SCID mice engrafted with human peripheral blood lymphocytes. J Immunol 152:3806–13.

    PubMed  CAS  Google Scholar 

  100. Santini SM, Spada M, Parlato S, Logozzi M, Lapenta C, Proietti E, Belardelli F and Fais S (1998) Treatment of severe combined immunodeficiency mice with anti-murine granulocyte monoclonal antibody improves human leukocyte xenotransplantation. Transplantation 65:416–20.

    Article  PubMed  CAS  Google Scholar 

  101. Santini SM, Lapenta C, Logozzi M, Parlato S, Spada M, Di Pucchio T and Belardelli F (2000) Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J Exp Med 191:1777–88.

    Article  PubMed  CAS  Google Scholar 

  102. Senpuku H, Asano T, Matin K, Salam MA, Tsuha Y, Horibata S, Shimazu Y, Soeno Y, Aoba T, Sata T, Hanada N and Honda M (2002) Effects of human interleukin-18 and interleukin-12 treatment on human lymphocyte engraftment in NOD-scid mouse. Immunology 107:232–42.

    Article  PubMed  CAS  Google Scholar 

  103. Serakinci N and Keith WN (2006) Therapeutic potential of adult stem cells. Eur J Cancer 42:1243–6.

    Article  PubMed  CAS  Google Scholar 

  104. Shibata S, Asano T, Noguchi A, Naito M, Ogura A and Doi K (1998) Peritoneal macrophages play an important role in eliminating human cells from severe combined immunodeficient mice transplanted with human peripheral blood lymphocytes. Immunology 93:524–32.

    Article  PubMed  CAS  Google Scholar 

  105. Shpitz B, Chambers CA, Singhal AB, Hozumi N, Fernandes BJ, Roifman CM, Weiner LM, Roder JC and Gallinger S (1994) High level of function engraftment of severe combined immunodeficient mice with human peripheral blood lymphocytes following pretreatment with radiation and anti-asialo-GM-1. J Immunol Methods 169:1–15.

    Article  PubMed  CAS  Google Scholar 

  106. Shultz L, Lyons B, Burzenski L, Gott B, Chen X, Chaleff S, Kotb M, Gillies S, King M, J M, Greiner D and Handgretinger R (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2rg null mice engrafted with mobilized human hematopoietic stem cells. J Immunol 174:6477–6489.

    PubMed  CAS  Google Scholar 

  107. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL et al. (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154:180–91.

    PubMed  CAS  Google Scholar 

  108. Shultz LD, Lang PA, Christianson SW, Gott B, Lyons B, Umeda S, Leiter E, Hesselton R, Wagar EJ, Leif JH, Kollet O, Lapidot T and Greiner DL (2000) NOD/LtSz-Rag1null mice: an immunodeficient and radioresistant model for engraftment of human hematolymphoid cells, HIV infection, and adoptive transfer of NOD mouse diabetogenic T cells. J Immunol 164:2496–507.

    PubMed  CAS  Google Scholar 

  109. Shultz LD, Banuelos S, Lyons B, Samuels R, Burzenski L, B. G, Land P, Leif J, M. A, A. R and Greiner DL (2003) NOD/LtSz-Rag1nullPfpnull mice: a new model system to increase levels of human peripheral leukocyte and hematopoietic stem cell engraftment. Transplantation 76:1036–1042.

    Article  PubMed  Google Scholar 

  110. Shultz LD, Ishikawa F and Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7:118–30.

    Article  PubMed  CAS  Google Scholar 

  111. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401.

    Article  PubMed  CAS  Google Scholar 

  112. Solter D (2006) From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat Rev Genet 7:319–27.

    Article  PubMed  CAS  Google Scholar 

  113. Sorrentino BP (2004) Clinical strategies for expansion of haematopoietic stem cells. Nat Rev Immunol 4:878–88.

    Article  PubMed  CAS  Google Scholar 

  114. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN and Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24:74–85.

    Article  PubMed  Google Scholar 

  115. Spence SE, Keller JR, Ruscetti FW, McCauslin CS, Gooya JM, Funakoshi S, Longo DL and Murphy WJ (1998) Engraftment of ex vivo expanded and cycling human cord blood hematopoietic progenitor cells in SCID mice. Exp Hematol 26:507–14.

    PubMed  CAS  Google Scholar 

  116. Stamm C, Liebold A, Steinhoff G and Strunk D (2006) Stem cell therapy for ischemic heart disease: beginning or end of the road? Cell Transplant 15 Suppl 1:S47–S56.

    Article  PubMed  Google Scholar 

  117. Suematsu S and Watanabe T (2004) Generation of a synthetic lymphoid tissue-like organoid in mice. Nat Biotechnol 22:1539–45.

    Article  PubMed  CAS  Google Scholar 

  118. Sugamura K, Asao H, Kondo M, Tanaka N, Ishii N, Ohbo K, Nakamura M and Takeshita T (1996) The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol 14:179–205.

    Article  PubMed  CAS  Google Scholar 

  119. Suttles JG, Schwarting GA and Stout RD (1986) Flow cytometric analysis reveals the presence of asialo-Gm on the surface membrane of alloimmune cytotoxic T lymphocytes. J Immunol 136:1586–1591.

    PubMed  CAS  Google Scholar 

  120. Takaki T, Marron MP, Mathews CE, Guttmann ST, Bottino R, Trucco M, DiLorenzo TP and Serreze DV (2006) HLA-A*0201-restricted T cells from humanized NOD mice recognize autoantigens of potential clinical relevance to type 1 diabetes. J Immunol 176:3257–65.

    PubMed  CAS  Google Scholar 

  121. Tanaka T, Tsudo M, Karasuyama H, Kitamura F, Kono T, Hatakeyama M, Taniguchi T and Miyasaka M (1991) A novel monoclonal antibody against murine IL-2 receptor beta-chain. Characterization of receptor expression in normal lymphoid cells and EL-4 cells. J Immunol 147:2222–8.

    PubMed  CAS  Google Scholar 

  122. Taneja V, Behrens M, Mangalam A, Griffiths MM, Luthra HS and David CS (2007) New humanized HLA-DR4-transgenic mice that mimic the sex bias of rheumatoid arthritis. Arthritis Rheum 56:69–78.

    Article  PubMed  Google Scholar 

  123. Taub DD, Tsarfaty G, Lloyd AR, Durum SK, Longo DL and Murphy WJ (1994) Growth hormone promotes human T cell adhesion and migration to both human and murine matrix proteins in vitro and directly promotes xenogeneic engraftment. J Clin Invest 94:293–300.

    Article  PubMed  CAS  Google Scholar 

  124. Taurog JD, Hammer RE, Maika SD, Sams K, El-zaatra FAK, Stimpson SA and Schwab JF (1990) HLA-A27 transgenic mice as potential models of human diseases. In: David CS (eds) Transgenic Mice and Mutants in MHC Research. Springer-Verlag, New York, pp 268–275.

    Google Scholar 

  125. Terpstra W, Leenen PJ, van den Bos C, Prins A, Loenen WA, Verstegen MM, van Wyngaardt S, van Rooijen N, Wognum AW, Wagemaker G, Wielenga JJ and Lowenberg B (1997) Facilitated engraftment of human hematopoietic cells in severe combined immunodeficient mice following a single injection of Cl2MDP liposomes. Leukemia 11:1049–54.

    Article  PubMed  CAS  Google Scholar 

  126. Tian X, Woll PS, Morris JK, Linehan JL and Kaufman DS (2006) Hematopoietic engraftment of human embryonic stem cell-derived cells is regulated by recipient innate immunity. Stem Cells 24:1370–80.

    Article  PubMed  CAS  Google Scholar 

  127. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A and Manz MG (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304:104–7.

    Article  PubMed  CAS  Google Scholar 

  128. Uze G, Lutfalla G and Gresser I (1990) Genetic transfer of a functional human interferon alpha receptor into mouse cells: cloning and expression of its cDNA. Cell 60:225–34.

    Article  PubMed  CAS  Google Scholar 

  129. van Halteren AG, Kardol MJ, Mulder A and Roep BO (2005) Homing of human autoreactive T cells into pancreatic tissue of NOD-scid mice. Diabetologia 48:75–82.

    Article  PubMed  CAS  Google Scholar 

  130. van Hensbergen Y, Schipper LF, Brand A, Slot MC, Welling M, Nauta AJ and Fibbe WE (2006) Ex vivo culture of human CD34+ cord blood cells with thrombopoietin (TPO) accelerates platelet engraftment in a NOD/SCID mouse model. Exp Hematol 34:943–50.

    Article  PubMed  CAS  Google Scholar 

  131. Verstegen MM, van Hennik PB, Terpstra W, van den Bos C, Wielenga JJ, van Rooijen N, Ploemacher RE, Wagemaker G and Wognum AW (1998) Transplantation of human umbilical cord blood cells in macrophage-depleted SCID mice: evidence for accessory cell involvement in expansion of immature CD34+CD38− cells. Blood 91:1966–76.

    PubMed  CAS  Google Scholar 

  132. Wahid S, Blades MC, De Lord D, Brown I, Blake G, Yanni G, Haskard DO, Panayi GS and Pitzalis C (2000) Tumour necrosis factor-alpha (TNF-alpha) enhances lymphocyte migration into rheumatoid synovial tissue transplanted into severe combined immunodeficient (SCID) mice. Clin Exp Immunol 122:133–42.

    Article  PubMed  CAS  Google Scholar 

  133. Wang J, Kimura T, Asada R, Harada S, Yokota S, Kawamoto Y, Fujimura Y, Tsuji T, Ikehara S and Sonoda Y (2003) SCID-repopulating cell activity of human cord blood-derived CD34− cells assured by intra-bone marrow injection. Blood 101:2924–31.

    Article  PubMed  CAS  Google Scholar 

  134. Watanabe S, Terashima K, Ohta S, Horibata S, Yajima M, Shiozawa Y, Dewan MZ, Yu Z, Ito M, Morio T, Shimizu N, Honda M and Yamamoto N (2007) Hematopoietic stem cell-engrafted NOD/SCID/IL2Rgnull mice develop human lymphoid system and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood 109:212–8.

    Article  PubMed  CAS  Google Scholar 

  135. Westerink MA, Metzger DW, Hutchins WA, Adkins AR, Holder PF, Pais LB, Gheesling LL and Carlone GM (1997) Primary human immune response toNeisseria meningitidis serogroup C in interleukin-12-treated severe combined immunodeficient mice engrafted with human peripheral blood lymphocytes. J Infect Dis 175:84–90.

    PubMed  CAS  Google Scholar 

  136. Woodland RT and Schmidt MR (2005) Homeostatic proliferation of B cells. Semin Immunol 17:209–17.

    Article  PubMed  CAS  Google Scholar 

  137. Woods A, Chen HY, Trumbauer ME, Sirotina A, Cummings R and Zaller DM (1994) Human major histocompatibility complex class II-restricted T cell responses in transgenic mice. J Exp Med 180:173–81.

    Article  PubMed  CAS  Google Scholar 

  138. Xia L, McDaniel JM, Yago T, Doeden A and McEver RP (2004) Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood 104:3091–6.

    Article  PubMed  CAS  Google Scholar 

  139. Yahata T, Ando K, Nakamura Y, Ueyama Y, Shimamura K, Tamaoki N, Kato S and Hotta T (2002) Functional human T lymphocyte development from cord blood CD34+ cells in nonobese diabetic/Shi-scid, IL-2 receptor gamma null mice. J Immunol 169:204–9.

    PubMed  CAS  Google Scholar 

  140. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, Nakamura R, Tanaka T, Tomiyama H, Saito N, Fukata M, Miyamoto T, Lyons B, Ohshima K, Uchida N, Taniguchi S, Ohara O, Akashi K, Harada M, Shultz LD (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 25:1315–21.

    Article  PubMed  CAS  Google Scholar 

  141. Zheng Y, Watanabe N, Nagamura-Inoue T, Igura K, Nagayama H, Tojo A, Tanosaki R, Takaue Y, Okamoto S and Takahashi TA (2003) Ex vivo manipulation of umbilical cord blood-derived hematopoietic stem/progenitor cells with recombinant human stem cell factor can up-regulate levels of homing-essential molecules to increase their transmigratory potential. Exp Hematol 31:1237–1246.

    Article  PubMed  CAS  Google Scholar 

  142. Zheng Y, Sun A and Han ZC (2005) Stem cell factor improves SCID-repopulating activity of human umbilical cord blood-derived hematopoietic stem/progenitor cells in xenotransplanted NOD/SCID mouse model. Bone Marrow Transplant 35:137–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pearson, T., Greiner, D.L., Shultz, L.D. (2008). Humanized SCID Mouse Models for Biomedical Research. In: Nomura, T., Watanabe, T., Habu, S. (eds) Humanized Mice. Current Topics in Microbiology and Immunology, vol 324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75647-7_2

Download citation

Publish with us

Policies and ethics