Skip to main content

Cmv1 and Natural Killer Cell Responses to Murine Cytomegalovirus Infection

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 321))

Abstract

The dissection of genetic resistance to murine cytomegalovirus infection in inbred laboratory mouse strains led to the identification of a natural killer cell activation receptor that recognizes a virus-encoded protein. Herein, we summarize the genetic approach and findings that have provided novel insights into innate immune control of virus infections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CMV:

Cytomegalovirus

DAP12:

DNAX activating protein of 12 kDa

Δm157:

MCMV clone lacking m157 expression

ENU:

N-Ethyl-N-nitrosourea

GFP:

Green fluorescent protein

HCMV:

Human CMV

Ig:

Immunoglobulin

ILT:

Ig-like transcripts

ITAM:

Immunoreceptor tyrosine-based activation motif

ITIM:

Immunoreceptor tyrosine-based inhibitory motif

KARAP:

Killer associated receptor adapter protein

KIR:

Killer Ig-like receptor

LCMV:

Lymphocytic choriomeningitis virus

MCMV:

Murine CMV

mAb:

Monoclonal antibody

MHC:

Major histocompatibility complex

NK:

Natural killer

NKC:

NK gene complex

ORF:

Open reading frame

RI:

Recombinant inbred

SCID-MCMV:

MCMV clones isolated from scid mice

TLR:

Toll-like receptor

References

  • Adam SG, Caraux A, Fodil-Cornu N, Loredo-Osti JC, Lesjean-Pottier S, Jaubert J, Bubic I, Jonjic S, Guenet JL, Vidal SM, Colucci F (2006) Cmv4, a new locus linked to the NK cell gene complex, controls innate resistance to cytomegalovirus in wild-derived mice. J Immunol 176:5478–5485

    PubMed  CAS  Google Scholar 

  • Alcami A, Smith GL (1992) A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71:153–167

    Article  PubMed  CAS  Google Scholar 

  • Allan JE, Shellam GR (1984) Genetic control of murine cytomegalovirus infection: virus titres in resistant and susceptible strains of mice. Arch Virol 81:139–150

    Article  PubMed  CAS  Google Scholar 

  • Allan JE, Shellam GR (1985) Characterization of interferon induction in mice of resistant and susceptible strains during murine cytomegalovirus infection. J Gen Virol 66:1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Andoniou CE, van Dommelen SL, Voigt V, Andrews DM, Brizard G, Asselin-Paturel C, Delale T, Stacey KJ, Trinchieri G, Degli-Esposti MA (2005) Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity. Nat Immunol 6:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296:1323–1326

    Article  PubMed  CAS  Google Scholar 

  • Bakker AB, Hoek RM, Cerwenka A, Blom B, Lucian L, McNeil T, Murray R, Phillips LH, Sedgwick JD, Lanier LL (2000) DAP12-deficient mice fail to develop autoimmunity due to impaired antigen priming. Immunity 13:345–353

    Article  PubMed  CAS  Google Scholar 

  • Bancroft GJ, Shellam GR, Chalmer JE (1981) Genetic influences on the augmentation of natural killer (NK) cells during murine cytomegalovirus infection: correlation with patterns of resistance. J Immunol 126:988–994

    PubMed  CAS  Google Scholar 

  • Beutler B, Crozat K, Koziol JA, Georgel P (2005) Genetic dissection of innate immunity to infection: the mouse cytomegalovirus model. Curr Opin Immunol 17:36–43

    Article  PubMed  CAS  Google Scholar 

  • Biron CA, Byron KS, Sullivan JL (1989) Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 320:1731–1735

    PubMed  CAS  Google Scholar 

  • Biron CA (1994) Cytokines in the generation of immune responses to, and resolution of, virus infection. Curr Opin Immunol 6:530–538

    Article  PubMed  CAS  Google Scholar 

  • Biron CA (1999) Initial and innate responses to viral infections—pattern setting in immunity or disease. Curr Opin Microbiol 2:374–381

    Article  PubMed  CAS  Google Scholar 

  • Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220

    Article  PubMed  CAS  Google Scholar 

  • Bradley M, Zeytun A, Rafi-Janajreh A, Nagarkatti PS, Nagarkatti M (1998) Role of spontaneous and interleukin-2-induced natural killer cell activity in the cytotoxicity and rejection of Fas+ and Fas− tumor cells. Blood 92:4248–4255

    PubMed  CAS  Google Scholar 

  • Braud VM, Allen DSJ, O’Callaghan CA, Söderström K, D’Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, McMichael AJ (1998) HLA-E binds to natural-killer-cell receptors CD94/NKG2A, B and C. Nature 391:795–799

    Article  PubMed  CAS  Google Scholar 

  • Brown MG, Fulmek S, Matsumoto K, Cho R, Lyons PA, Levy ER, Scalzo AA, Yokoyama WM (1997) A 2-Mb YAC contig and physical map of the natural killer gene complex on mouse chromosome 6. Genomics 42:16–25

    Article  PubMed  CAS  Google Scholar 

  • Brown MG, Zhang J, Du Y, Stoll J, Yokoyama WM, Scalzo AA (1999) Localization on a physical map of the NKC-linked Cmv1 locus between Ly49b and the Prp gene cluster on mouse chromosome 6. J Immunol 163:1991–1999

    PubMed  CAS  Google Scholar 

  • Brown MG, Dokun AO, Heusel JW, Smith HR, Beckman DL, Blattenberger EA, Dubbelde CE, Stone LR, Scalzo AA, Yokoyama WM (2001) Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292:934–937

    Article  PubMed  CAS  Google Scholar 

  • Bubic I, Wagner M, Krmpotic A, Saulig T, Kim S, Yokoyama WM, Jonjic S, Koszinowski UH (2004) Gain of virulence caused by loss of a gene in murine cytomegalovirus. J Virol 78:7536–7544

    Article  PubMed  CAS  Google Scholar 

  • Bukowski JF, Woda BA, Habu S, Okumura K, Welsh RM (1983) Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J Immunol 131:1531–1538

    PubMed  CAS  Google Scholar 

  • Bukowski JF, Woda BA, Welsh RM (1984) Pathogenesis of murine cytomegalovirus infection in natural killer cell-depleted mice. J Virol 52:119–128

    PubMed  CAS  Google Scholar 

  • Bukowski JF, Warner JF, Dennert G, Welsh RM (1985) Adoptive transfer studies demonstrating the antiviral effect of natural killer cells in vivo. J Exp Med 161:40–52

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh VJ, Stenberg RM, Staley TL, Virgin HWt, MacDonald MR, Paetzold S, Farrell HE, Rawlinson WD, Campbell AE (1996) Murine cytomegalovirus with a deletion of genes spanning HindIII-J and -I displays altered cell and tissue tropism. J Virol 70:1365–1374

    PubMed  CAS  Google Scholar 

  • Chalmer JE, Mackenzie JS, Stanley NF (1977) Resistance to murine cytomegalovirus linked to the major histocompatibility complex of the mouse. J Gen Virol 37:107–114

    Article  PubMed  CAS  Google Scholar 

  • Cohen GB, Gandhi RT, Davis DM, Mandelboim O, Chen BK, Strominger JL, Baltimore D (1999) The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10:661–671

    Article  PubMed  CAS  Google Scholar 

  • Cosman D, Fanger N, Borges L, Kubin M, Chin W, Peterson L, Hsu ML (1997) A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules. Immunity 7:273–282

    Article  PubMed  CAS  Google Scholar 

  • Crozat K, Hoebe K, Ugolini S, Hong NA, Janssen E, Rutschmann S, Mudd S, Sovath S, Vivier E, Beutler B (2007) Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis. J Exp Med 204:853–863

    Article  PubMed  CAS  Google Scholar 

  • Daniels KA, Devora G, Lai WC, O’Donnell CL, Bennett M, Welsh RM (2001) Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to ly49 h. J Exp Med 194:29–44

    Article  PubMed  CAS  Google Scholar 

  • Delano ML, Brownstein DG (1995) Innate resistance to lethal mousepox is genetically linked to the NK gene complex on chromosome 6 and correlates with early restriction of virus replication by cells with an NK phenotype. J Virol 69:5875–5877

    PubMed  CAS  Google Scholar 

  • Depatie C, Muise E, Lepage P, Gros P, Vidal SM (1997) High-resolution linkage map in the proximity of the host resistance locus CMV1. Genomics 39:154–163

    Article  PubMed  CAS  Google Scholar 

  • Depatie C, Lee SH, Stafford A, Avner P, Belouchi A, Gros P, Vidal SM (2000) Sequence-ready BAC contig, physical, and transcriptional map of a 2-Mb region overlapping the mouse chromosome 6 host-resistance locus Cmv1. Genomics 66:161–174

    Article  PubMed  CAS  Google Scholar 

  • Desrosiers MP, Kielczewska A, Loredo-Osti JC, Adam SG, Makrigiannis AP, Lemieux S, Pham T, Lodoen MB, Morgan K, Lanier LL, Vidal SM (2005) Epistasis between mouse Klra and major histocompatibility complex class I loci is associated with a new mechanism of natural killer cell-mediated innate resistance to cytomegalovirus infection. Nat Genet 37: 593–599

    Article  PubMed  CAS  Google Scholar 

  • Dighe A, Rodriguez M, Sabastian P, Xie X, McVoy M, Brown MG (2005) Requisite H2k role in NK cell-mediated resistance in acute murine cytomegalovirus-infected MA/My mice. J Immunol 175:6820–6828

    PubMed  CAS  Google Scholar 

  • Dokun AO, Chu DT, Yang L, Bendelac AS, Yokoyama WM (2001a) Analysis of in situ NK cell responses during viral infection. J Immunol 167:5286–5293

    PubMed  CAS  Google Scholar 

  • Dokun AO, Kim S, Smith HR, Kang HS, Chu DT, Yokoyama WM (2001b) Specific and nonspecific NK cell activation during virus infection. Nat Immunol 2:951–956

    Article  PubMed  CAS  Google Scholar 

  • Dorner BG, Smith HRC, French AR, Kim S, Poursine-Laurent J, Beckman DL, Pingel JT, Kroczek RA, Yokoyama WM (2004) Coordinate expression of cytokines and chemokines by natural killer cells during murine cytomegalovirus infection. J Immunol 172:3119–3131

    PubMed  CAS  Google Scholar 

  • Dubois S, Mariner J, Waldmann TA, Tagaya Y (2002) IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 17:537–547

    Article  PubMed  CAS  Google Scholar 

  • Farrell HE, Vally H, Lynch DM, Fleming P, Shellam GR, Scalzo AA, Davis-Poynter NJ (1997) Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo. Nature 386:510–514

    Article  PubMed  CAS  Google Scholar 

  • Fenner F (1983) The Florey lecture, 1983. Biological control, as exemplified by smallpox eradication and myxomatosis. Proc R Soc Lond B Biol Sci 218:259–285

    Article  PubMed  CAS  Google Scholar 

  • Forbes CA, Brown MG, Cho R, Shellam GR, Yokoyama WM, Scalzo AA (1997) The Cmv1 host resistance locus is closely linked to the Ly49 multigene family within the natural killer cell gene complex on mouse chromosome 6. Genomics 41:406–413

    Article  PubMed  CAS  Google Scholar 

  • French AR, Pingel JT, Wagner M, Bubic I, Yang L, Kim S, Koszinowski U, Jonjic S, Yokoyama WM (2004) Escape of mutant double-stranded DNA virus from innate immune control. Immunity 20:747–756

    Article  PubMed  CAS  Google Scholar 

  • French AR, Pingel JT, Kim S, Yang L, Yokoyama WM (2005) Rapid emergence of escape mutants following infection with murine cytomegalovirus in immunodeficient mice. Clin Immunol 115:61–69

    Article  PubMed  CAS  Google Scholar 

  • French AR, Sjolin H, Kim S, Koka R, Yang L, Young DA, Cerboni C, Tomasello E, Ma A, Vivier E, Kärre K, Yokoyama WM (2006) DAP12 signaling directly augments proproliferative cytokine stimulation of NK Cells during viral infections. J Immunol 177:4981–4990

    PubMed  CAS  Google Scholar 

  • Furukawa H, Iizuka K, Poursine-Laurent J, Shastri N, Yokoyama WM (2002) A ligand for the murine NK activation receptor Ly-49D: activation of tolerized NK cells from beta(2)-microglobulin-deficient mice. J Immunol 169:126–136

    PubMed  CAS  Google Scholar 

  • Gazit R, Gruda R, Elboim M, Arnon TI, Katz G, Achdout H, Hanna J, Qimron U, Landau G, Greenbaum E, Zakay-Rones Z, Porgador A, Mandelboim O (2006) Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7:517–523

    Article  PubMed  CAS  Google Scholar 

  • Grundy JE, Mackenzie JS, Stanley NF (1981) Influence of H-2 and non-H-2 genes on resistance to murine cytomegalovirus infection. Infect Immun 32:277–286

    PubMed  CAS  Google Scholar 

  • Grundy JE, Trapman J, Allan JE, Shellam GR, Melief CJ (1982) Evidence for a protective role of interferon in resistance to murine cytomegalovirus and its control by non-H-2-linked genes. Infect Immun 37:143–150

    PubMed  CAS  Google Scholar 

  • Guma M, Budt M, Saez A, Brckalo T, Hengel H, Angulo A, Lopez-Botet M (2006a) Expansion of CD94/NKG2C+ NK cells in response to human cytomegalovirus-infected fibroblasts. Blood 107:3624–3631

    Article  PubMed  CAS  Google Scholar 

  • Guma M, Cabrera C, Erkizia I, Bofill M, Clotet B, Ruiz L, Lopez-Botet M (2006b) Human cytomegalovirus infection is associated with increased proportions of NK cells that express the CD94/NKG2C receptor in aviremic HIV-1-positive patients. J Infect Dis 194:38–41

    Article  PubMed  Google Scholar 

  • Hanke T, Takizawa H, McMahon CW, Busch DH, Pamer EG, Miller JD, Altman JD, Liu Y, Cado D, Lemonnier FA, Bjorkman PJ, Raulet DH (1999) Direct assessment of MHC class I binding by seven Ly49 inhibitory NK cell receptors. Immunity 11:67–77

    Article  PubMed  CAS  Google Scholar 

  • Hao L, Klein J, Nei M (2006) Heterogeneous but conserved natural killer receptor gene complexes in four major orders of mammals. Proc Natl Acad Sci U S A 103:3192–3197

    Article  PubMed  CAS  Google Scholar 

  • Hasan M, Krmpotic A, Ruzsics Z, Bubic I, Lenac T, Halenius A, Loewendorf A, Messerle M, Hengel H, Jonjic S, Koszinowski UH (2005) Selective down-regulation of the NKG2D ligand H60 by mouse cytomegalovirus m155 glycoprotein. J Virol 79:2920–2930

    Article  PubMed  CAS  Google Scholar 

  • Henkart PA (1994) Lymphocyte-mediated cytotoxicity: two pathways and multiple effector molecules. Immunity 1:343–346

    Article  PubMed  CAS  Google Scholar 

  • Ho EL, Carayannopoulos LN, Poursine-Laurent J, Kinder J, Plougastel B, Smith HRC, Yokoyama WM (2002) Co-stimulation of multiple NK cell activation receptors by NKG2D. J Immunol 169:3667–3675

    PubMed  CAS  Google Scholar 

  • Idris AH, Smith HRC, Mason LH, Ortaldo JH, Scalzo AA, Yokoyama WM (1999) The natural killer cell complex genetic locus, Chok, encodes Ly49D, a target recognition receptor that activates natural killing. Proc Natl Acad Sci U S A 96:6330–6335

    Article  PubMed  CAS  Google Scholar 

  • Ishido S, Choi JK, Lee BS, Wang C, DeMaria M, Johnson RP, Cohen GB, Jung JU (2000) Inhibition of natural killer cell-mediated cytotoxicity by Kaposi’s sarcoma-associated herpesvirus K5 protein. Immunity 13:365–374

    Article  PubMed  CAS  Google Scholar 

  • Jawahar S, Moody C, Chan M, Finberg R, Geha R, Chatila T (1996) Natural Killer (NK) cell deficiency associated with an epitope-deficient Fc receptor type IIIA (CD16-II). Clin Exp Immunol 103:408–413

    PubMed  CAS  Google Scholar 

  • Karlhofer FM, Ribaudo RK, Yokoyama WM (1992) MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358:66–70

    Article  PubMed  CAS  Google Scholar 

  • Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of natural killer cell receptor gene clusters. PLoS Genet 1:129–139

    Article  PubMed  CAS  Google Scholar 

  • Kelley LA, MacCallum RM, Sternberg MJ (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:499–520

    Article  PubMed  CAS  Google Scholar 

  • Kleijnen MF, Huppa JB, Lucin P, Mukherjee S, Farrell H, Campbell AE, Koszinowski UH, Hill AB, Ploegh HL (1997) A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J 16:685–694

    Article  PubMed  CAS  Google Scholar 

  • Koka R, Burkett PR, Chien M, Chai S, Chan F, Lodolce JP, Boone DL, Ma A (2003) Interleukin (IL)-15R[alpha]-deficient natural killer cells survive in normal but not IL-15R[alpha]-deficient mice. J Exp Med 197:977–984

    Article  PubMed  CAS  Google Scholar 

  • Krmpotic A, Busch DH, Bubic I, Gebhardt F, Hengel H, Hasan M, Scalzo AA, Koszinowski UH, Jonjic S (2002) MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo. Nat Immunol 3:529–535

    Article  PubMed  CAS  Google Scholar 

  • Krmpotic A, Hasan M, Loewendorf A, Saulig T, Halenius A, Lenac T, Polic B, Bubic I, Kriegeskorte A, Pernjak-Pugel E, Messerle M, Hengel H, Busch DH, Koszinowski UH, Jonjic S (2005) NK cell activation through the NKG2D ligand MULT-1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145. J Exp Med 201:211–220

    Article  PubMed  CAS  Google Scholar 

  • Krug A, French AR, Barchet W, Fischer JAA, Dzionek A, Pingel JT, Orihuela MM, Akira S, Yokoyama WM, Colonna M (2004) TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21:107–119

    Article  PubMed  CAS  Google Scholar 

  • Kubota A, Kubota S, Farrell HE, Davis-Poynter N, Takei F (1999) Inhibition of NK cells by murine CMV-encoded class I MHC homologue m144. Cell Immunol 191:145–151

    Article  PubMed  CAS  Google Scholar 

  • Kveberg L, Back CJ, Dai KZ, Inngjerdingen M, Rolstad B, Ryan JC, Vaage JT, Naper C (2006) The novel inhibitory NKR-P1C receptor and Ly49s3 identify two complementary, functionally distinct NK cell subsets in rats. J Immunol 176:4133–4140

    PubMed  CAS  Google Scholar 

  • Lanier LL, Cortiss BC, Wu J, Leong C, Phillips JH (1998) Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391:703–707

    Article  PubMed  CAS  Google Scholar 

  • Lee N, Llano M, Carretero M, Ishitani A, Navarro F, Lopez-Botet M, Geraghty DE (1998) HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci U S A 95:5199*5204

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Girard S, Macina D, Busa M, Zafer A, Belouchi A, Gros P, Vidal SM (2001) Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat Genet 28:42–45

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Zafer A, de Repentigny Y, Kothary R, Tremblay ML, Gros P, Duplay P, Webb JR, Vidal SM (2003) Transgenic expression of the activating natural killer receptor Ly49H confers resistance to cytomegalovirus in genetically susceptible mice. J Exp Med 197:515–526

    Article  PubMed  CAS  Google Scholar 

  • Lenac T, Budt M, Arapovic J, Hasan M, Zimmermann A, Simic H, Krmpotic A, Messerle M, Ruzsics Z, Koszinowski UH, Hengel H, Jonjic S (2006) The herpesviral Fc receptor fcr-1 down-regulates the NKG2D ligands MULT-1 and H60. J Exp Med 203:1843–1850

    Article  PubMed  CAS  Google Scholar 

  • Ljunggren HG, Kärre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11:237–244

    Article  PubMed  CAS  Google Scholar 

  • Lodoen MB, Abenes G, Umamoto S, Houchins JP, Liu F, Lanier LL (2004) The cytomegalovirus m155 gene product subverts natural killer cell antiviral protection by disruption of H60-NKG2D interactions. J Exp Med 200:1075–1081

    Article  PubMed  CAS  Google Scholar 

  • Loh J, Chu DT, O’Guin AK, Yokoyama WM, Virgin HWt (2005) Natural killer cells utilize both perforin and gamma interferon to regulate murine cytomegalovirus infection in the spleen and liver. J Virol 79:661–667

    Article  PubMed  CAS  Google Scholar 

  • Long EO (1999) Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 17:875–904

    Article  PubMed  CAS  Google Scholar 

  • Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, Davis DM, Strominger JL, Yewdell JW, Porgador A (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409:1055–1060

    Article  PubMed  CAS  Google Scholar 

  • Mocarski ES, Courcelle CT (2001) Cytomegalovirus and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams and Wilkins, Philadelphia, pp 2626–2673

    Google Scholar 

  • Nakamura MC, Naper C, Niemi EC, Spusta SC, Rolstad B, Butcher GW, Seaman WE, Ryan JC (1999) Natural killing of xenogeneic cells mediated by the mouse Ly-49D receptor. J Immunol 163:4694–4700

    PubMed  CAS  Google Scholar 

  • Olcese L, Cambiaggi A, Semenzato G, Bottino C, Moretta A, Vivier E (1997) Human killer cell activatory receptors for MHC class I molecules are included in a multimeric complex expressed by natural killer cells. J Immunol 158:5083–5086

    PubMed  CAS  Google Scholar 

  • Orange JS, Wang B, Terhorst C, Biron CA (1995) Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J Exp Med 182:1045–1056

    Article  PubMed  CAS  Google Scholar 

  • Orange JS, Biron CA (1996) An absolute and restricted requirement for IL-12 in natural killer cell IFN-gamma production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J Immunol 156:1138–1142

    PubMed  CAS  Google Scholar 

  • Pereira RA, Scalzo A, Simmons A (2001) Cutting edge: a NK complex-linked locus governs acute versus latent herpes simplex virus infection of neurons. J Immunol 166:5869–5873

    PubMed  CAS  Google Scholar 

  • Prlic M, Blazar BR, Farrar MA, Jameson SC (2003) In vivo survival and homeostatic proliferation of natural killer cells. J Exp Med 197:967–976

    Article  PubMed  CAS  Google Scholar 

  • Quinnan GV Jr, Manischewitz JF (1987) Genetically determined resistance to lethal murine cytomegalovirus infection is mediated by interferon-dependent and -independent restriction of virus replication. J Virol 61:1875–1881

    PubMed  Google Scholar 

  • Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89

    Article  PubMed  CAS  Google Scholar 

  • Rawlinson WD, Farrell HE, Barrell BG (1996) Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 70:8833–8849

    PubMed  CAS  Google Scholar 

  • Reyburn HT, Mandelboim O, Vales-Gomez M, Davis DM, Pazmany L, Strominger JL (1997) The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells. Nature 386:514–517

    Article  PubMed  CAS  Google Scholar 

  • Sanderson S, Shastri N (1994) LacZ inducible, antigen/MHC-specific T cell hybrids. Int Immunol 6:369–376

    Article  PubMed  CAS  Google Scholar 

  • Scalzo AA, Fitzgerald NA, Simmons A, La Vista AB, Shellam GR (1990) Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J Exp Med 171:1469–1483

    Article  PubMed  CAS  Google Scholar 

  • Scalzo AA, Fitzgerald NA, Wallace CR, Gibbons AE, Smart YC, Burton RC, Shellam GR (1992) The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. J Immunol 149:581–589

    PubMed  CAS  Google Scholar 

  • Scalzo AA, Lyons PA, Fitzgerald NA, Forbes CA, Yokoyama WM, Shellam GR (1995a) Genetic mapping of Cmv1 in the region of mouse chromosome 6 encoding the NK gene complex-associated loci Ly49 and musNKR-P1. Genomics 27:435–441

    Article  PubMed  CAS  Google Scholar 

  • Scalzo AA, Lyons PA, Fitzgerald NA, Forbes CA, Shellam GR (1995b) The BALB.B6-Cmv1r mouse: a strain congenic for Cmv1 and the NK gene complex. Immunogenetics 41:148–151

    Article  PubMed  CAS  Google Scholar 

  • Scalzo AA, Wheat R, Dubbelde C, Stone L, Clark P, Du Y, Dong N, Stoll J, Yokoyama WM, Brown MG (2003) Molecular genetic characterization of the distal NKC recombination hotspot and putative murine CMV resistance control locus. Immunogenetics 55:370–378

    Article  PubMed  CAS  Google Scholar 

  • Scalzo AA, Manzur M, Forbes CA, Brown MG, Shellam GR (2005) NK gene complex haplotype variability and host resistance alleles to murine cytomegalovirus in wild mouse populations. Immunol Cell Biol 83:144–149

    Article  PubMed  CAS  Google Scholar 

  • Selgrade MK, Osborn JE (1974) Role of macrophages in resistance to murine cytomegalovirus. Infect Immun 10:1383–1390

    PubMed  CAS  Google Scholar 

  • Shellam GR, Allan JE, Papadimitriou JM, Bancroft GJ (1981) Increased susceptibility to cytomegalovirus infection in beige mutant mice. Proc Natl Acad Sci USA 78:5104–5108

    Article  PubMed  CAS  Google Scholar 

  • Shellam GR, Flexman JP, Farrell HE, Papadimitriou JM (1985) The genetic background modulates the effect of the beige gene on susceptibility to cytomegalovirus infection in mice. Scand J Immunol 22:147–155

    Article  PubMed  CAS  Google Scholar 

  • Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C, Moretta L, Moretta A (1997) p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med 186:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Sjolin H, Tomasello E, Mousavi-Jazi M, Bartolazzi A, Kärre K, Vivier E, Cerboni C (2002) Pivotal role of KARAP/DAP12 adaptor molecule in the natural killer cell-mediated resistance to murine cytomegalovirus infection. J Exp Med 195:825–834

    Article  PubMed  CAS  Google Scholar 

  • Smith HR, Chuang HH, Wang LL, Salcedo M, Heusel JW, Yokoyama WM (2000) Nonstochastic coexpression of activation receptors on murine natural killer cells. J Exp Med 191:1341–1354

    Article  PubMed  CAS  Google Scholar 

  • Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, Naidenko OV, Iizuka K, Furukawa H, Beckman DL, Pingel JT, Scalzo AA, Fremont DH, Yokoyama WM (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci U S A 99:8826–8831

    PubMed  CAS  Google Scholar 

  • Smith HRC, Karlhofer FM, Yokoyama WM (1994) Ly-49 multigene family expressed by IL-2-activated NK cells. J Immunol 153:1068–1079

    PubMed  CAS  Google Scholar 

  • Smith KM, Wu J, Bakker AB, Phillips JH, Lanier LL (1998) Cutting edge: Ly-49D and Ly-49H associate with mouse DAP12 and form activating receptors. J Immunol 161:7–10

    PubMed  CAS  Google Scholar 

  • Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K, Mudd S, Shamel L, Sovath S, Goode J, Alexopoulou L, Flavell RA, Beutler B (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci U S A 101:3516–3521

    Article  PubMed  CAS  Google Scholar 

  • Tay CH, Welsh RM (1997) Distinct organ-dependent mechanisms for the control of murine cytomegalovirus infection by natural killer cells. J Virol 71:267–275

    PubMed  CAS  Google Scholar 

  • Tay CH, Yu LY, Kumar V, Mason L, Ortaldo JR, Welsh RM (1999) The role of LY49 NK cell subsets in the regulation of murine cytomegalovirus infections. J Immunol 162:718–726

    PubMed  CAS  Google Scholar 

  • Thale R, Szepan U, Hengel H, Geginat G, Lucin P, Koszinowski UH (1995) Identification of the mouse cytomegalovirus genomic region affecting major histocompatibility complex class I molecule transport. J Virol 69:6098–6105

    PubMed  CAS  Google Scholar 

  • Tomasec P, Braud VM, Rickards C, Powell MB, McSharry BP, Gadola S, Cerundolo V, Borysiewicz LK, McMichael AJ, Wilkinson GW (2000) Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287:1031

    Article  PubMed  CAS  Google Scholar 

  • Tomasello E, Desmoulins PO, Chemin K, Guia S, Cremer H, Ortaldo J, Love P, Kaiserlian D, Vivier E (2000) Combined natural killer cell and dendritic cell functional deficiency in KARAP/DAP12 loss-of-function mutant mice. Immunity 13:355–364

    Article  PubMed  CAS  Google Scholar 

  • Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL (2000) Viral subversion of the immune system. Annu Rev Immunol 18:861–926

    Article  PubMed  CAS  Google Scholar 

  • Tripathy SK, Smith HRC, Holroyd EA, Pingel JT, Yokoyama WM (2006) Expression of m157, a murine cytomegalovirus-encoded putative major histocompatibility class I (MHC-I)-like protein, is independent of viral regulation of host MHC-I. J Virol 80:545–550

    Article  PubMed  CAS  Google Scholar 

  • Tsang S, Sun Z, Luke B, Stewart C, Lum N, Gregory M, Wu X, Subleski M, Jenkins NA, Copeland NG, Munroe DJ (2005) A comprehensive SNP-based genetic analysis of inbred mouse strains. Mamm Genome 16:476–480

    Article  PubMed  CAS  Google Scholar 

  • Ulbrecht M, Martinozzi S, Grzeschik M, Hengel H, Ellwart JW, Pla M, Weiss EH (2000) Cutting edge: the human cytomegalovirus UL40 gene product contains a ligand for HLA-E and prevents NK cell-mediated lysis. J Immunol 164:5019–5022

    PubMed  CAS  Google Scholar 

  • van Dommelen SL, Sumaria N, Schreiber RD, Scalzo AA, Smyth MJ, Degli-Esposti MA (2006) Perforin and granzymes have distinct roles in defensive immunity and immunopathology. Immunity 25:835–848

    Article  PubMed  CAS  Google Scholar 

  • Vance RE, Kraft JR, Altman JD, Jensen PE, Raulet DH (1998) Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J Exp Med 188:1841–1848

    Article  PubMed  CAS  Google Scholar 

  • Voigt V, Forbes CA, Tonkin JN, Degli-Esposti MA, Smith HR, Yokoyama WM, Scalzo AA (2003) Murine cytomegalovirus m157 mutation and variation leads to immune evasion of natural killer cells. Proc Natl Acad Sci U S A 100:13483–13488

    Article  PubMed  CAS  Google Scholar 

  • Welsh RM, Dundon PL, Eynon EE, Brubaker JO, Koo GC, O’Donnell CL (1990) Demonstration of the antiviral role of natural killer cells in vivo with a natural killer cell-specific monoclonal antibody (NK1.1). Nat Immun Cell Growth Regul 9:112–120

    PubMed  CAS  Google Scholar 

  • Wong S, Freeman JD, Kelleher C, Mager D, Takei F (1991) Ly-49 multigene family. New members of a superfamily of type II membrane proteins with lectin-like domains. J Immunol 147:1417–1423

    PubMed  CAS  Google Scholar 

  • Xie X, Dighe A, Clark P, Sabastian P, Buss S, Brown MG (2007) Deficient major histocompatibility complex-linked innate murine cytomegalovirus immunity in MA/My.L-H2b mice and viral downregulation of H-2k class I proteins. J Virol 81:229–236

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama WM, Kehn PJ, Cohen DI, Shevach EM (1990) Chromosomal location of the Ly-49 (A1, YE1/48) multigene family. Genetic association with the NK1.1 antigen. J Immunol 145:2353–2358

    PubMed  CAS  Google Scholar 

  • Yokoyama WM, Ryan JC, Hunter JJ, Smith HR, Stark M, Seaman WE (1991) cDNA cloning of mouse NKR-P1 and genetic linkage with Ly-49. Identification of a natural killer cell gene complex on mouse chromosome 6. J Immunol 147:3229–3236

    PubMed  CAS  Google Scholar 

  • Yokoyama WM, Plougastel BF (2003) Immune functions encoded by the natural killer gene complex. Nat Rev Immunol 3:304–316

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama WM (2008) Natural killer cells. In: Paul WE (ed) Fundamental immunology. Lippincott-Raven, New York, pp 575–603

    Google Scholar 

  • Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B (1998) Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188:2375–2380

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Yokoyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scalzo, A.A., Yokoyama, W.M. (2008). Cmv1 and Natural Killer Cell Responses to Murine Cytomegalovirus Infection. In: Beutler, B. (eds) Immunology, Phenotype First: How Mutations Have Established New Principles and Pathways in Immunology. Current Topics in Microbiology and Immunology, vol 321. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75203-5_5

Download citation

Publish with us

Policies and ethics