Skip to main content

Genetic Analysis of Resistance to Infections in Mice: A/J meets C57BL/6J

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 321))

Abstract

Susceptibility to infectious diseases has long been known to have a genetic component in human populations. This genetic effect is often complex and difficult to study as it is further modified by environmental factors including the disease-causing pathogen itself. The laboratory mouse has proved a useful alternative to implement a genetic approach to study host defenses against infections. Our laboratory has used genetic analysis and positional cloning to characterize single and multi-gene effects regulating inter-strain differences in the susceptibility of A/J and C57BL/6J mice to infection with several bacterial and parasitic pathogens. This has led to the identification of several proteins including Nrampl (Slcl lal), Bircle, Icsbp, C5a, and others that play critical roles in the antimicrobial defenses of macrophages against intracellular pathogens. The use of AcB/BcA recombinant congenic strains has further facilitated the characterization of single gene effects in complex traits such as susceptibility to malaria. The genetic identification of erythrocyte pyruvate kinase (Pklr) and myeloid pantetheinase enzymes (Vnn1/3) as key regulators of blood-stage parasitemia has suggested that cellular redox potential may be a key biochemical determinant of Plasmodium parasite replication. Expanding these types of studies to additional inbred strains and to emerging stocks of mutagenized mice will undoubtedly continue to unravel the molecular basis of host defense against infections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel L, Sanchez FO, Oberti J, Thuc NV, Hoa LV, Lap VD, Skamene E, Lagrange PH, Schurr E (1998) Susceptibility to leprosy is linked to the human NRAMP1 gene. J Infect Dis 177:133–145

    Article  PubMed  CAS  Google Scholar 

  • Alcais A, Sanchez FO, Thuc NV, Lap VD, Oberti J, Lagrange PH, Schurr E, Abel L (2000) Granulomatous reaction to intradermal injection of lepromin (Mitsuda reaction) is linked to the human NRAMP1 gene in Vietnamese leprosy sibships. J Infect Dis 181:302–308

    Article  PubMed  CAS  Google Scholar 

  • Ashman RB (1998) Candida albicans: pathogenesis, immunity and host defence. Res Immunol 149:281–288; discussion 494–286

    Article  PubMed  CAS  Google Scholar 

  • Ashman RB, Fulurija A, Papadimitriou JM (1996) Strain-dependent differences in host response to Candida albicans infection in mice are related to organ susceptibility and infectious load. Infect Immun 64:1866–1869

    PubMed  CAS  Google Scholar 

  • Ashman RB, Papadimitriou JM, Fulurija A, Drysdale KE, Farah CS, Naidoo O, Gotjamanos T (2003) Role of complement C5 and T lymphocytes in pathogenesis of disseminated and mucosal candidiasis in susceptible DBA/2 mice. Microb Pathog 34:103–113

    Article  PubMed  CAS  Google Scholar 

  • Baghdadi JE, Orlova M, Alter A, Ranque B, Chentoufi M, Lazrak F, Archane MI, Casanova JL, Benslimane A, Schurr E, Abel L (2006) An autosomal dominant major gene confers predisposition to pulmonary tuberculosis in adults. J Exp Med 203:1679–1684

    Article  PubMed  CAS  Google Scholar 

  • Barreiro LB, Neyrolles O, Babb CL, Tailleux L, Quach H, McElreavey K, Helden PD, Hoal EG, Gicquel B, Quintana-Murci L (2006) Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med 3:e20

    Article  PubMed  CAS  Google Scholar 

  • Bearden SW, Perry RD (1999) The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol 32:403–414

    Article  PubMed  CAS  Google Scholar 

  • Bedigian HG, Taylor BA, Meier H (1981) Expression of murine leukemia viruses in the highly lymphomatous BXH-2 recombinant inbred mouse strain. J Virol 39:632–640

    PubMed  CAS  Google Scholar 

  • Bedigian HG, Johnson DA, Jenkins NA, Copeland NG, Evans R (1984) Spontaneous and induced leukemias of myeloid origin in recombinant inbred BXH mice. J Virol 51:586–594

    PubMed  CAS  Google Scholar 

  • Bedigian HG, Shepel LA, Hoppe PC (1993) Transplacental transmission of a leukemogenic murine leukemia virus. J Virol 67:6105–6109

    PubMed  CAS  Google Scholar 

  • Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV (1998) Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med 338:640–644

    Article  PubMed  CAS  Google Scholar 

  • Bellamy R, Ruwende C, Corrah T, McAdam KP, Thursz M, Whittle HC, Hill AV (1999) Tuberculosis and chronic hepatitis B virus infection in Africans and variation in the vitamin D receptor gene. J Infect Dis 179:721–724

    Article  PubMed  CAS  Google Scholar 

  • Bellamy R, Beyers N, McAdam KP, Ruwende C, Gie R, Samaai P, Bester D, Meyer M, Corrah T, Collin M, Camidge DR, Wilkinson D, Hoal-Van Helden E, Whittle HC, Amos W, van Helden P, Hill AV (2000) Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci USA 97:8005–8009

    Article  PubMed  CAS  Google Scholar 

  • Bennett B, Johnson TE (1998) Development of congenics for hypnotic sensitivity to ethanol by QTL-marker-assisted counter selection. Mamm Genome 9:969–974

    Article  PubMed  CAS  Google Scholar 

  • Boyer E, Bergevin I, Malo D, Gros P, Cellier MF (2002) Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect Immun 70:6032–6042

    Article  PubMed  CAS  Google Scholar 

  • Burt RA, Baldwin TM, Marshall VM, Foote SJ (1999) Temporal expression of an H2-linked locus in host response to mouse malaria. Immunogenetics 50:278–285

    Article  PubMed  CAS  Google Scholar 

  • Canonne-Hergaux F, Gruenheid S, Ponka P, Gros P (1999) Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood 93:4406–4417

    PubMed  CAS  Google Scholar 

  • Canonne-Hergaux F, Calafat J, Richer E, Cellier M, Grinstein S, Borregaard N, Gros P (2002) Expression and subcellular localization of NRAMP1 in human neutrophil granules. Blood 100:268–275

    Article  PubMed  CAS  Google Scholar 

  • Casanova JL, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20:581–620

    Article  PubMed  CAS  Google Scholar 

  • Casanova JL, Abel L (2007) Human genetics of infectious diseases: a unified theory. EMBO J 26:915–922

    Article  PubMed  CAS  Google Scholar 

  • Cellier M, Govoni G, Vidal S, Kwan T, Groulx N, Liu J, Sanchez F, Skamene E, Schurr E, Gros P (1994) Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression. J Exp Med 180:1741–1752

    Article  PubMed  CAS  Google Scholar 

  • Cellier M, Prive G, Belouchi A, Kwan T, Rodrigues V, Chia W, Gros P (1995) Nramp defines a family of membrane proteins. Proc Natl Acad Sci USA 92:10089–10093

    Article  PubMed  CAS  Google Scholar 

  • Cellier M, Shustik C, Dalton W, Rich E, Hu J, Malo D, Schurr E, Gros P (1997) Expression of the human NRAMP1 gene in professional primary phagocytes: studies in blood cells and in HL-60 promyelocytic leukemia. J Leukoc Biol 61:96–105

    PubMed  CAS  Google Scholar 

  • Cervino AC, Lakiss S, Sow O, Hill AV (2000) Allelic association between the NRAMP1 gene and susceptibility to tuberculosis in Guinea-Conakry. Ann Hum Genet 64:507–512

    Article  PubMed  CAS  Google Scholar 

  • Cinader B, Dubiski S, Wardlaw AC (1964) Distribution, inheritance, and properties of an antigen, Mub1, and its relation to hemolytic complement. J Exp Med 120:897–924

    Article  PubMed  CAS  Google Scholar 

  • Clemens DL, Horwitz MA (1995) Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med 181:257–270

    Article  PubMed  CAS  Google Scholar 

  • Clemens DL, Lee BY, Horwitz MA (2000a) Deviant expression of Rab5 on phagosomes containing the intracellular pathogens Mycobacterium tuberculosis and Legionella pneumophila is associated with altered phagosomal fate. Infect Immun 68:2671–2684

    Article  PubMed  CAS  Google Scholar 

  • Clemens DL, Lee BY, Horwitz MA (2000b) Mycobacterium tuberculosis and Legionella pneumophila phagosomes exhibit arrested maturation despite acquisition of Rab7. Infect Immun 68:5154–5166

    Article  PubMed  CAS  Google Scholar 

  • Clementi M, Di Gianantonio E (2006) Genetic susceptibility to infectious diseases. Reprod Toxicol 21:345–349

    Article  PubMed  CAS  Google Scholar 

  • Comstock GW (1978) Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis 117:621–624

    PubMed  CAS  Google Scholar 

  • Cooke GS, Hill AV (2001) Genetics of susceptibility to human infectious disease. Nat Rev Genet 2:967–977

    Article  PubMed  CAS  Google Scholar 

  • Cuellar-Mata P, Jabado N, Liu J, Furuya W, Finlay BB, Gros P, Grinstein S (2002) Nramp1 modifies the fusion of Salmonella typhimurium-containing vacuoles with cellular endomembranes in macrophages. J Biol Chem 277:2258–2265

    Article  PubMed  CAS  Google Scholar 

  • de Jong R, Altare F, Haagen IA, Elferink DG, Boer T, van Breda Vriesman PJ, Kabel PJ, Draaisma JM, van Dissel JT, Kroon FP, Casanova JL, Ottenhoff TH (1998) Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280:1435–1438

    Article  PubMed  CAS  Google Scholar 

  • de Repentigny L (2004) Animal models in the analysis of Candida host-pathogen interactions. Curr Opin Microbiol 7:324–329

    Article  PubMed  Google Scholar 

  • Delgado JC, Baena A, Thim S, Goldfeld AE (2006) Aspartic acid homozygosity at codon 57 of HLA-DQ beta is associated with susceptibility to pulmonary tuberculosis in Cambodia. J Immunol 176:1090–1097

    PubMed  CAS  Google Scholar 

  • Diez E, Lee SH, Gauthier S, Yaraghi Z, Tremblay M, Vidal S, Gros P (2003) Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat Genet 33:55–60

    Article  PubMed  CAS  Google Scholar 

  • Dupuis S, Jouanguy E, Al-Hajjar S, Fieschi C, Al-Mohsen IZ, Al-Jumaah S, Yang K, Chapgier A, Eidenschenk C, Eid P, Al Ghonaium A, Tufenkeji H, Frayha H, Al-Gazlan S, Al-Rayes H, Schreiber RD, Gresser I, Casanova JL (2003) Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet 33:388–391

    Article  PubMed  CAS  Google Scholar 

  • Eggimann P, Garbino J, Pittet D (2003) Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis 3:685–702

    Article  PubMed  Google Scholar 

  • Fidel PLJ, Sobel JD (1999) Murine models of Candida vaginal infections. In: Sande M, Zak O (eds) Handbook of animal models of infection. Academic Press, Guersney, pp 741–748

    Chapter  Google Scholar 

  • Fierer J, Guiney DG (2001) Diverse virulence traits underlying different clinical outcomes of Salmonella infection. J Clin Invest 107:775–780

    Article  PubMed  CAS  Google Scholar 

  • Flores-Villanueva PO, Ruiz-Morales JA, Song CH, Flores LM, Jo EK, Montano M, Barnes PF, Selman M, Granados J (2005) A functional promoter polymorphism in monocyte chemoattractant protein-1 is associated with increased susceptibility to pulmonary tuberculosis. J Exp Med 202:1649–1658

    Article  PubMed  CAS  Google Scholar 

  • Foote SJ, Burt RA, Baldwin TM, Presente A, Roberts AW, Laural YL, Lew AM, Marshall VM (1997) Mouse loci for malaria-induced mortality and the control of parasitaemia. Nat Genet 17:380–381

    Article  PubMed  CAS  Google Scholar 

  • Forbes JR, Gros P (2003) Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 102:1884–1892

    Article  PubMed  CAS  Google Scholar 

  • Fortier A, Diez E, Gros P (2005) Naip5/Birc1e and susceptibility to Legionella pneumophila. Trends Microbiol 13:328–335

    Article  PubMed  CAS  Google Scholar 

  • Fortier A, de Chastellier C, Balor S, Gros P (2007) Birc1e/Naip5 rapidly antagonizes modulation of phagosome maturation by Legionella pneumophila. Cell Microbiol 9:910–923

    Article  PubMed  CAS  Google Scholar 

  • Fortin A, Belouchi A, Tam MF, Cardon L, Skamene E, Stevenson MM, Gros P (1997) Genetic control of blood parasitaemia in mouse malaria maps to chromosome 8. Nat Genet 17:382–383

    Article  PubMed  CAS  Google Scholar 

  • Fortin A, Cardon LR, Tam M, Skamene E, Stevenson MM, Gros P (2001a) Identification of a new malaria susceptibility locus (Char4) in recombinant congenic strains of mice. Proc Natl Acad Sci USA 98:10793–10798

    Article  PubMed  CAS  Google Scholar 

  • Fortin A, Diez E, Rochefort D, Laroche L, Malo D, Rouleau GA, Gros P, Skamene E (2001b) Recombinant congenic strains derived from A/J and C57BL/6J: a tool for genetic dissection of complex traits. Genomics 74:21–35

    Article  PubMed  CAS  Google Scholar 

  • Fortin A, Stevenson MM, Gros P (2002) Complex genetic control of susceptibility to malaria in mice. Genes Immun 3:177–186

    Article  PubMed  CAS  Google Scholar 

  • Fortin A, Abel L, Casanova JL, Gros P (2007) Host genetics of mycobacterial diseases in mice and men: forward genetic studies of BCG-osis and tuberculosis. Annu Rev Genomics Hum Genet 8:163–192

    Article  PubMed  CAS  Google Scholar 

  • Frehel C, Canonne-Hergaux F, Gros P, De Chastellier C (2002) Effect of Nramp1 on bacterial replication and on maturation of Mycobacterium avium-containing phagosomes in bone marrow-derived mouse macrophages. Cell Microbiol 4:541–556

    Article  PubMed  CAS  Google Scholar 

  • Fritz JH, Ferrero RL, Philpott DJ, Girardin SE (2006) Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7:1250–1257

    Article  PubMed  CAS  Google Scholar 

  • Frodsham AJ, Hill AV (2004) Genetics of infectious diseases. Hum Mol Genet 13 Spec No 2:R187–194

    Article  CAS  Google Scholar 

  • Gao PS, Fujishima S, Mao XQ, Remus N, Kanda M, Enomoto T, Dake Y, Bottini N, Tabuchi M, Hasegawa N, Yamaguchi K, Tiemessen C, Hopkin JM, Shirakawa T, Kishi F (2000) Genetic variants of NRAMP1 and active tuberculosis in Japanese populations. International Tuberculosis Genetics Team. Clin Genet 58:74–76

    Article  PubMed  CAS  Google Scholar 

  • Gerard C, Gerard NP (1994) C5A anaphylatoxin and its seven transmembrane-segment receptor. Annu Rev Immunol 12:775–808

    Article  PubMed  CAS  Google Scholar 

  • Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167:1882–1885

    PubMed  CAS  Google Scholar 

  • Goldfeld AE, Delgado JC, Thim S, Bozon MV, Uglialoro AM, Turbay D, Cohen C, Yunis EJ (1998) Association of an HLA-DQ allele with clinical tuberculosis. JAMA 279:226–228

    Article  PubMed  CAS  Google Scholar 

  • Good MF (2005) Vaccine-induced immunity to malaria parasites and the need for novel strategies. Trends Parasitol 21:29–34

    Article  PubMed  CAS  Google Scholar 

  • Govoni G, Vidal S, Gauthier S, Skamene E, Malo D, Gros P (1996) The Bcg/Ity/Lsh locus: genetic transfer of resistance to infections in C57BL/6J mice transgenic for the Nramp1 Gly169 allele. Infect Immun 64:2923–2929

    PubMed  CAS  Google Scholar 

  • Govoni G, Canonne-Hergaux F, Pfeifer CG, Marcus SL, Mills SD, Hackam DJ, Grinstein S, Malo D, Finlay BB, Gros P (1999) Functional expression of Nramp1 in vitro in the murine macrophage line RAW264.7. Infect Immun 67:2225–2232

    PubMed  CAS  Google Scholar 

  • Greenwood CM, Fujiwara TM, Boothroyd LJ, Miller MA, Frappier D, Fanning EA, Schurr E, Morgan K (2000) Linkage of tuberculosis to chromosome 2q35 loci, including NRAMP1, in a large aboriginal Canadian family. Am J Hum Genet 67:405–416

    Article  PubMed  CAS  Google Scholar 

  • Gros P, Skamene E, Forget A (1983) Cellular mechanisms of genetically controlled host resistance to Mycobacterium bovis (BCG). J Immunol 131:1966–1972

    PubMed  CAS  Google Scholar 

  • Gruenheid S, Pinner E, Desjardins M, Gros P (1997) Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J Exp Med 185:717–730

    Article  PubMed  CAS  Google Scholar 

  • Hackam DJ, Rotstein OD, Zhang W, Gruenheid S, Gros P, Grinstein S (1998) Host resistance to intracellular infection: mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification. J Exp Med 188:351–364

    Article  PubMed  CAS  Google Scholar 

  • Hantke K (1997) Ferrous iron uptake by a magnesium transport system is toxic for Escherichia coli and Salmonella typhimurium. J Bacteriol 179:6201–6204

    PubMed  CAS  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103

    Article  PubMed  CAS  Google Scholar 

  • Hill AV (2001) The genomics and genetics of human infectious disease susceptibility. Annu Rev Genomics Hum Genet 2:373–400

    Article  PubMed  CAS  Google Scholar 

  • Hill AV (2006) Aspects of genetic susceptibility to human infectious diseases. Annu Rev Genet 40:469–486

    Article  PubMed  CAS  Google Scholar 

  • Hinman AR, Judd JM, Kolnik JP, Daitch PB (1976) Changing risks in tuberculosis. Am J Epidemiol 103:486–497

    PubMed  CAS  Google Scholar 

  • Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752

    PubMed  CAS  Google Scholar 

  • Huynh C, Sacks DL, Andrews NW (2006) A Leishmania amazonensis ZIP family iron transporter is essential for parasite replication within macrophage phagolysosomes. J Exp Med 203:2363–2375

    Article  PubMed  CAS  Google Scholar 

  • Jabado N, Jankowski A, Dougaparsad S, Picard V, Grinstein S, Gros P (2000) Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J Exp Med 192:1237–1248

    Article  PubMed  CAS  Google Scholar 

  • Jabado N, Cuellar-Mata P, Grinstein S, Gros P (2003) Iron chelators modulate the fusogenic properties of Salmonella-containing phagosomes. Proc Natl Acad Sci USA 100: 6127–6132

    Article  PubMed  CAS  Google Scholar 

  • Janakiraman A, Slauch JM (2000) The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium. Mol Microbiol 35:1146–1155

    Article  PubMed  CAS  Google Scholar 

  • Jenkins NA, Copeland NG, Taylor BA, Bedigian HG, Lee BK (1982) Ecotropic murine leukemia virus DNA content of normal and lymphomatous tissues of BXH-2 recombinant inbred mice. J Virol 42:379–388

    PubMed  CAS  Google Scholar 

  • Jouanguy E, Lamhamedi-Cherradi S, Lammas D, Dorman SE, Fondaneche MC, Dupuis S, Doffinger R, Altare F, Girdlestone J, Emile JF, Ducoulombier H, Edgar D, Clarke J, Oxelius VA, Brai M, Novelli V, Heyne K, Fischer A, Holland SM, Kumararatne DS, Schreiber RD, Casanova JL (1999) A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat Genet 21:370–378

    Article  PubMed  CAS  Google Scholar 

  • Kahler AK, Persson AS, Sanchez F, Kallstrom H, Apt AS, Schurr E, Lavebratt C (2005) A new coding mutation in the Tnf-alpha leader sequence in tuberculosis-sensitive I/St mice causes higher secretion levels of soluble TNF-alpha. Genes Immun 6:620–627

    Article  PubMed  CAS  Google Scholar 

  • Kammler M, Schon C, Hantke K (1993) Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol 175:6212–6219

    PubMed  CAS  Google Scholar 

  • Kehres DG, Maguire ME (2003) Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. FEMS Microbiol Rev 27:263–290

    Article  PubMed  CAS  Google Scholar 

  • Kehres DG, Janakiraman A, Slauch JM, Maguire ME (2002) SitABCD is the alkaline Mn(2+) transporter of Salmonella enterica serovar Typhimurium. J Bacteriol 184:3159–3166

    Article  PubMed  CAS  Google Scholar 

  • Khasnis AA, Nettleman MD (2005) Global warming and infectious disease. Arch Med Res 36:689–696

    Article  PubMed  Google Scholar 

  • Knodler LA, Steele-Mortimer O (2003) Taking possession: biogenesis of the Salmonella-containing vacuole. Traffic 4:587–599

    Article  PubMed  CAS  Google Scholar 

  • Kramnik I, Dietrich WF, Demant P, Bloom BR (2000) Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. Proc Natl Acad Sci USA 97:8560–8565

    Article  PubMed  CAS  Google Scholar 

  • Kullberg BJ, Filler SG (2002) Candidemia. In: Calderone RA (ed) Candida and candidiasis. ASM Press, Washington DC, pp 327–340

    Google Scholar 

  • Kwiatkowski D (2000) Genetic susceptibility to malaria getting complex. Curr Opin Genet Dev 10:320–324

    Article  PubMed  CAS  Google Scholar 

  • Lam-Yuk-Tseung S, Gros P (2003) Genetic control of susceptibility to bacterial infections in mouse models. Cell Microbiol 5:299–313

    Article  PubMed  CAS  Google Scholar 

  • Lam-Yuk-Tseung S, Camaschella C, Iolascon A, Gros P (2006) A novel R416C mutation in human DMT1 (SLC11A2) displays pleiotropic effects on function and causes microcytic anemia and hepatic iron overload. Blood Cells Mol Dis 36:347–354

    Article  PubMed  CAS  Google Scholar 

  • Lavebratt C, Apt AS, Nikonenko BV, Schalling M, Schurr E (1999) Severity of tuberculosis in mice is linked to distal chromosome 3 and proximal chromosome 9. J Infect Dis 180:150–155

    Article  PubMed  CAS  Google Scholar 

  • Levin M, Newport M (2000) Inherited predisposition to mycobacterial infection: historical considerations. Microbes Infect 2:1549–1552

    Article  PubMed  CAS  Google Scholar 

  • Li HT, Zhang TT, Zhou YQ, Huang QH, Huang J (2006) SLC11A1 (formerly NRAMP1) gene polymorphisms and tuberculosis susceptibility: a meta-analysis. Int J Tuberc Lung Dis 10:3–12

    PubMed  CAS  Google Scholar 

  • Lio D, Marino V, Serauto A, Gioia V, Scola L, Crivello A, Forte GI, Colonna-Romano G, Candore G, Caruso C (2002) Genotype frequencies of the +874T→A single nucleotide polymorphism in the first intron of the interferon-gamma gene in a sample of Sicilian patients affected by tuberculosis. Eur J Immunogenet 29:371–374

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Maderuelo D, Arnalich F, Serantes R, Gonzalez A, Codoceo R, Madero R, Vazquez JJ, Montiel C (2003) Interferon-gamma and interleukin-10 gene polymorphisms in pulmonary tuberculosis. Am J Respir Crit Care Med 167:970–975

    Article  PubMed  Google Scholar 

  • Lyon FL, Hector RF, Domer JE (1986) Innate and acquired immune responses against Candida albicans in congenic B10.D2 mice with deficiency of the C5 complement component. J Med Vet Mycol 24:359–367

    Article  PubMed  CAS  Google Scholar 

  • MacVittie TJ, O’Brien AD, Walker RI, Weinberg SR (1982) Inflammatory response of LPS-hyporesponsive and LPS-responsive mice to challenge with gram-negative bacteria Salmonella typhimurium and Klebsiella pneumoniae. Adv Exp Med Biol 155:325–334

    PubMed  CAS  Google Scholar 

  • Maier JK, Lahoua Z, Gendron NH, Fetni R, Johnston A, Davoodi J, Rasper D, Roy S, Slack RS, Nicholson DW, MacKenzie AE (2002) The neuronal apoptosis inhibitory protein is a direct inhibitor of caspases 3 and 7. J Neurosci 22:2035–2043

    PubMed  CAS  Google Scholar 

  • Malik S, Abel L, Tooker H, Poon A, Simkin L, Girard M, Adams GJ, Starke JR, Smith KC, Graviss EA, Musser JM, Schurr E (2005) Alleles of the NRAMP1 gene are risk factors for pediatric tuberculosis disease. Proc Natl Acad Sci USA 102:12183–12188

    Article  PubMed  CAS  Google Scholar 

  • Malo D, Vogan K, Vidal S, Hu J, Cellier M, Schurr E, Fuks A, Bumstead N, Morgan K, Gros P (1994) Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites. Genomics 23:51–61

    Article  PubMed  CAS  Google Scholar 

  • Marquet S, Schurr E (2001) Genetics of susceptibility to infectious diseases: tuberculosis and leprosy as examples. Drug Metab Dispos 29:479–483

    PubMed  CAS  Google Scholar 

  • Marquis G, Montplaisir S, Pelletier M, Auger P, Lapp WS (1988) Genetics of resistance to infection with Candida albicans in mice. Br J Exp Pathol 69:651–660

    PubMed  CAS  Google Scholar 

  • Marquis JF, Gros P (2007) Intracellular Leishmania: your iron or mine? Trends Microbiol 15:93–95

    Article  PubMed  CAS  Google Scholar 

  • Marquis JF, Forbes JR, Canonne-Hergaux F, Horth C, Gros P (2008) Metal transport genes. In: Genetic susceptibility to infectious diseases. Kaslow R, McNicholl J, Hill A (eds) Oxford University Press, New York USA. pp175–189

    Google Scholar 

  • Marsh K, Snow RW (1997) 30 years of science and technology: the example of malaria. Lancet 349:1–2

    Article  Google Scholar 

  • Martinon F, Tschopp J (2007) Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 14:10–22

    Article  PubMed  CAS  Google Scholar 

  • Mastroeni P, Vazquez-Torres A, Fang FC, Xu Y, Khan S, Hormaeche CE, Dougan G (2000) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med 192:237–248

    Article  PubMed  CAS  Google Scholar 

  • Medina E, North RJ (1996) Evidence inconsistent with a role for the Bcg gene (Nramp1) in resistance of mice to infection with virulent Mycobacterium tuberculosis. J Exp Med 183:1045–1051

    Article  PubMed  CAS  Google Scholar 

  • Medina E, North RJ (1998) Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype. Immunology 93:270–274

    Article  PubMed  CAS  Google Scholar 

  • Mencacci A, Cenci E, Bistoni F, Bacci A, Del Sero G, Montagnoli C, Fe d’Ostiani C, Romani L (1998) Specific and non-specific immunity to Candida albicans: a lesson from genetically modified animals. Res Immunol 149:352–361; discussion 517–359

    Article  PubMed  CAS  Google Scholar 

  • Miller EN, Jamieson SE, Joberty C, Fakiola M, Hudson D, Peacock CS, Cordell HJ, Shaw MA, Lins-Lainson Z, Shaw JJ, Ramos F, Silveira F, Blackwell JM (2004) Genome-wide scans for leprosy and tuberculosis susceptibility genes in Brazilians. Genes Immun 5:63–67

    Article  PubMed  CAS  Google Scholar 

  • Min-Oo G, Gros P (2005) Erythrocyte variants and the nature of their malaria protective effect. Cell Microbiol 7:753–763

    Article  PubMed  CAS  Google Scholar 

  • Min-Oo G, Fortin A, Tam MF, Nantel A, Stevenson MM, Gros P (2003) Pyruvate kinase deficiency in mice protects against malaria. Nat Genet 35:357–362

    Article  PubMed  CAS  Google Scholar 

  • Min-Oo G, Fortin A, Tam MF, Gros P, Stevenson MM (2004) Phenotypic expression of pyruvate kinase deficiency and protection against malaria in a mouse model. Genes Immun 5:168–175

    Article  PubMed  CAS  Google Scholar 

  • Min-Oo G, Fortin A, Pitari G, Tam M, Stevenson MM, Gros P (2007a) Complex genetic control of susceptibility to malaria: positional cloning of the Char9 locus. J Exp Med 204:511–524

    Article  PubMed  CAS  Google Scholar 

  • Min-Oo G, Tam M, Stevenson MM, Gros P (2007b) Pyruvate kinase deficiency: correlation between enzyme activity, extent of hemolytic anemia and protection against malaria in independent mouse mutants. Blood Cells Mol Dis 39:63–69

    Article  PubMed  CAS  Google Scholar 

  • Mitsos LM, Cardon LR, Fortin A, Ryan L, LaCourse R, North RJ, Gros P (2000) Genetic control of susceptibility to infection with Mycobacterium tuberculosis in mice. Genes Immun 1:467–477

    Article  PubMed  CAS  Google Scholar 

  • Mitsos LM, Cardon LR, Ryan L, LaCourse R, North RJ, Gros P (2003) Susceptibility to tuberculosis: a locus on mouse chromosome 19 (Trl-4) regulates Mycobacterium tuberculosis replication in the lungs. Proc Natl Acad Sci USA 100:6610–6615

    Article  PubMed  CAS  Google Scholar 

  • Molofsky AB, Byrne BG, Whitfield NN, Madigan CA, Fuse ET, Tateda K, Swanson MS (2006) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Morelli R, Rosenberg LT (1971) Role of complement during experimental Candida infection in mice. Infect Immun 3:521–523

    PubMed  CAS  Google Scholar 

  • Motulsky AG (1960) Metabolic polymorphisms and the role of infectious diseases in human evolution. Hum Biol 32:28–62

    PubMed  CAS  Google Scholar 

  • Mullick A, Leon Z, Min-Oo G, Berghout J, Lo R, Daniels E, Gros P (2006) Cardiac failure in C5-deficient A/J mice after Candida albicans infection. Infect Immun 74:4439–4451

    Article  PubMed  CAS  Google Scholar 

  • Nairz M, Theurl I, Ludwiczek S, Theurl M, Mair SM, Fritsche G, Weiss G (2007) The co-ordinated regulation of iron homeostasis in murine macrophages limits the availability of iron for intracellular Salmonella typhimurium. Cell Microbiol 9:2126–2140

    Article  PubMed  CAS  Google Scholar 

  • Norrby SR, Nord CE, Finch R; European Society of Clinical Microbiology and Infectious Diseases (2005) Lack of development of new antimicrobial drugs: a potential serious threat to public health. Lancet Infect Dis 5:115–119

    PubMed  Google Scholar 

  • North RJ, Jung YJ (2004) Immunity to tuberculosis. Annu Rev Immunol 22:599–623

    Article  PubMed  CAS  Google Scholar 

  • O’Brien AD, Rosenstreich DL, Scher I, Campbell GH, MacDermott RP, Formal SB (1980) Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J Immunol 124:20–24

    PubMed  Google Scholar 

  • O’Brien AD, Weinstein DA, Soliman MY, Rosenstreich DL (1985) Additional evidence that the Lps gene locus regulates natural resistance to S. typhimurium in mice. J Immunol 134:2820–2823

    PubMed  Google Scholar 

  • Ochman H, Groisman EA (1994) The origin and evolution of species differences in Escherichia coli and Salmonella typhimurium. EXS 69:479–493

    PubMed  CAS  Google Scholar 

  • Odds FC (1988) Candida and candidosis, 2nd edn. Bailliaere Tindall, London

    Google Scholar 

  • Odds FC, Van Nuffel L, Gow NA (2000) Survival in experimental Candida albicans infections depends on inoculum growth conditions as well as animal host. Microbiology 146:1881–1889

    PubMed  CAS  Google Scholar 

  • Pan H, Yan BS, Rojas M, Shebzukhov YV, Zhou H, Kobzik L, Higgins DE, Daly MJ, Bloom BR, Kramnik I (2005) Ipr1 gene mediates innate immunity to tuberculosis. Nature 434:767–772

    Article  PubMed  CAS  Google Scholar 

  • Parry C, Davies PD (1996) The resurgence of tuberculosis. Soc Appl Bacteriol Symp Ser 25:23S–26S

    PubMed  CAS  Google Scholar 

  • Perrelet D, Ferri A, MacKenzie AE, Smith GM, Korneluk RG, Liston P, Sagot Y, Terrado J, Monnier D, Kato AC (2000) IAP family proteins delay motoneuron cell death in vivo. Eur J Neurosci 12:2059–2067

    Article  PubMed  CAS  Google Scholar 

  • Picard C, Casanova JL, Abel L (2006) Mendelian traits that confer predisposition or resistance to specific infections in humans. Curr Opin Immunol 18:383–390

    Article  PubMed  CAS  Google Scholar 

  • Poltorak A, Smirnova I, He X, Liu MY, Van Huffel C, McNally O, Birdwell D, Alejos E, Silva M, Du X, Thompson P, Chan EK, Ledesma J, Roe B, Clifton S, Vogel SN, Beutler B (1998) Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis 24:340–355

    Article  PubMed  CAS  Google Scholar 

  • Poon A, Schurr E (2004) The NRAMP genes and human susceptibility to common diseases. In: Cellier M, Gros P (eds) The NRAMP family. Kluwer Academic/Plenum Publishers, New York, pp 29–43

    Google Scholar 

  • Qureshi ST, Lariviere L, Sebastiani G, Clermont S, Skamene E, Gros P, Malo D (1996) A high-resolution map in the chromosomal region surrounding the Lps locus. Genomics 31:283–294

    Article  PubMed  CAS  Google Scholar 

  • Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D (1999) Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 189:615–625

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C (2004) Iron, mycobacteria and tuberculosis. Tuberculosis (Edinb) 84:110–130

    Article  Google Scholar 

  • Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE (2006) Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2:e18

    Article  PubMed  CAS  Google Scholar 

  • Rieder HL, Kelly GD, Bloch AB, Cauthen GM, Snider DE Jr (1991) Tuberculosis diagnosed at death in the United States. Chest 100:678–681

    Article  PubMed  CAS  Google Scholar 

  • Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zahringer U, Seydel U, Di Padova F, et al (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 8:217–225

    PubMed  CAS  Google Scholar 

  • Rosenberger CM, Scott MG, Gold MR, Hancock RE, Finlay BB (2000) Salmonella typhimurium infection and lipopolysaccharide stimulation induce similar changes in macrophage gene expression. J Immunol 164:5894–5904

    PubMed  CAS  Google Scholar 

  • Rossouw M, Nel HJ, Cooke GS, van Helden PD, Hoal EG (2003) Association between tuberculosis and a polymorphic NFkappaB binding site in the interferon gamma gene. Lancet 361:1871–1872

    Article  PubMed  CAS  Google Scholar 

  • Roy MF, Riendeau N, Loredo-Osti JC, Malo D (2006) Complexity in the host response to Salmonella typhimurium infection in AcB and BcA recombinant congenic strains. Genes Immun 7:655–666

    Article  PubMed  CAS  Google Scholar 

  • Royle MC, Totemeyer S, Alldridge LC, Maskell DJ, Bryant CE (2003) Stimulation of Toll-like receptor 4 by lipopolysaccharide during cellular invasion by live Salmonella typhimurium is a critical but not exclusive event leading to macrophage responses. J Immunol 170:5445–5454

    PubMed  CAS  Google Scholar 

  • Russell DG, Dant J, Sturgill-Koszycki S (1996) Mycobacterium avium- and Mycobacterium tuberculosis-containing vacuoles are dynamic, fusion-competent vesicles that are accessible to glycosphingolipids from the host cell plasmalemma. J Immunol 156:4764–4773

    PubMed  CAS  Google Scholar 

  • Ryu S, Park YK, Bai GH, Kim SJ, Park SN, Kang S (2000) 3RUTR polymorphisms in the NRAMP1 gene are associated with susceptibility to tuberculosis in Koreans. Int J Tuberc Lung Dis 4:577–580

    PubMed  CAS  Google Scholar 

  • Salvin SB, Neta R (1983) Resistance and susceptibility to infection in inbred murine strains. I. Variations in the response to thymic hormones in mice infected with Candida albicans. Cell Immunol 75:160–172

    Article  PubMed  CAS  Google Scholar 

  • Sanchez F, Radaeva TV, Nikonenko BV, Persson AS, Sengul S, Schalling M, Schurr E, Apt AS, Lavebratt C (2003) Multigenic control of disease severity after virulent Mycobacterium tuberculosis infection in mice. Infect Immun 71:126–131

    Article  PubMed  CAS  Google Scholar 

  • Sapoval B, Filoche M, Weibel ER (2002) Smaller is better—but not too small: a physical scale for the design of the mammalian pulmonary acinus. Proc Natl Acad Sci USA 99:10411–10416

    Article  PubMed  CAS  Google Scholar 

  • Schaible UE, Sturgill-Koszycki S, Schlesinger PH, Russell DG (1998) Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J Immunol 160:1290–1296

    PubMed  CAS  Google Scholar 

  • Searle S, Bright NA, Roach TI, Atkinson PG, Barton CH, Meloen RH, Blackwell JM (1998) Localisation of Nramp1 in macrophages: modulation with activation and infection. J Cell Sci 111:2855–2866

    PubMed  CAS  Google Scholar 

  • Sebastiani G, Olien L, Gauthier S, Skamene E, Morgan K, Gros P, Malo D (1998) Mapping of genetic modulators of natural resistance to infection with Salmonella typhimurium in wild-derived mice. Genomics 47:180–186

    Article  PubMed  CAS  Google Scholar 

  • Sebastiani G, Leveque G, Lariviere L, Laroche L, Skamene E, Gros P, Malo D (2000) Cloning and characterization of the murine toll-like receptor 5 (Tlr5) gene: sequence and mRNA expression studies in Salmonella-susceptible MOLF/Ei mice. Genomics 64:230–240

    Article  PubMed  CAS  Google Scholar 

  • Sebastiani G, Blais V, Sancho V, Vogel SN, Stevenson MM, Gros P, Lapointe JM, Rivest S, Malo D (2002) Host immune response to Salmonella enterica serovar Typhimurium infection in mice derived from wild strains. Infect Immun 70:1997–2009

    Article  PubMed  CAS  Google Scholar 

  • Selvaraj P, Narayanan PR, Reetha AM (1999) Association of functional mutant homozygotes of the mannose binding protein gene with susceptibility to pulmonary tuberculosis in India. Tuber Lung Dis 79:221–227

    Article  PubMed  CAS  Google Scholar 

  • Skamene E, Gros P, Forget A, Kongshavn PA, St Charles C, Taylor BA (1982) Genetic regulation of resistance to intracellular pathogens. Nature 297:506–509

    Article  PubMed  CAS  Google Scholar 

  • Skamene E, Schurr E, Gros P (1998) Infection genomics: Nramp1 as a major determinant of natural resistance to intracellular infections. Annu Rev Med 49:275–287

    Article  PubMed  CAS  Google Scholar 

  • Sousa AO, Salem JI, Lee FK, Vercosa MC, Cruaud P, Bloom BR, Lagrange PH, David HL (1997) An epidemic of tuberculosis with a high rate of tuberculin anergy among a population previously unexposed to tuberculosis, the Yanomami Indians of the Brazilian Amazon. Proc Natl Acad Sci USA 94:13227–13232

    Article  PubMed  CAS  Google Scholar 

  • Stead WW, Senner JW, Reddick WT, Lofgren JP (1990) Racial differences in susceptibility to infection by Mycobacterium tuberculosis. N Engl J Med 322:422–427

    PubMed  CAS  Google Scholar 

  • Stienstra Y, van der Werf TS, Oosterom E, Nolte IM, van der Graaf WT, Etuaful S, Raghunathan PL, Whitney EA, Ampadu EO, Asamoa K, Klutse EY, te Meerman GJ, Tappero JW, Ashford DA, van der Steege G (2006) Susceptibility to Buruli ulcer is associated with the SLC11A1 (NRAMP1) D543 N polymorphism. Genes Immun 7:185–189

    Article  PubMed  CAS  Google Scholar 

  • Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678–681

    Article  PubMed  CAS  Google Scholar 

  • Sturgill-Koszycki S, Schaible UE, Russell DG (1996) Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis. EMBO J 15:6960–6968

    PubMed  CAS  Google Scholar 

  • Taylor BA (1978) Recombinant inbred strains: use in gene mapping. In: Morse H 3rd (ed) Origins of inbred mice. Academic Press, New York, pp 423–438

    Google Scholar 

  • Thye T, Browne EN, Chinbuah MA, Gyapong J, Osei I, Owusu-Dabo E, Niemann S, Rusch-Gerdes S, Horstmann RD, Meyer CG (2006) No associations of human pulmonary tuberculosis with Sp110 variants. J Med Genet 43:e32

    Article  PubMed  CAS  Google Scholar 

  • Tosh K, Campbell SJ, Fielding K, Sillah J, Bah B, Gustafson P, Manneh K, Lisse I, Sirugo G, Bennett S, Aaby P, McAdam KP, Bah-Sow O, Lienhardt C, Kramnik I, Hill AV (2006) Variants in the SP110 gene are associated with genetic susceptibility to tuberculosis in West Africa. Proc Natl Acad Sci USA 103:10364–10368

    Article  PubMed  CAS  Google Scholar 

  • Tso HW, Ip WK, Chong WP, Tam CM, Chiang AK, Lau YL (2005) Association of interferon gamma and interleukin 10 genes with tuberculosis in Hong Kong Chinese. Genes Immun 6:358–363

    Article  PubMed  CAS  Google Scholar 

  • Tsolis RM, Baumler AJ, Heffron F, Stojiljkovic I (1996) Contribution of TonB- and Feo-mediated iron uptake to growth of Salmonella typhimurium in the mouse. Infect Immun 64:4549–4556

    PubMed  CAS  Google Scholar 

  • Tuite A, Mullick A, Gros P (2004) Genetic analysis of innate immunity in resistance to Candida albicans. Genes Immun 5:576–587

    Article  PubMed  CAS  Google Scholar 

  • Tuite A, Elias M, Picard S, Mullick A, Gros P (2005) Genetic control of susceptibility to Candida albicans in susceptible A/J and resistant C57BL/6J mice. Genes Immun 6:672–682

    PubMed  CAS  Google Scholar 

  • Turcotte K, Gauthier S, Mitsos LM, Shustik C, Copeland NG, Jenkins NA, Fournet JC, Jolicoeur P, Gros P (2004) Genetic control of myeloproliferation in BXH-2 mice. Blood 103:2343–2350

    Article  PubMed  CAS  Google Scholar 

  • Turcotte K, Gauthier S, Tuite A, Mullick A, Malo D, Gros P (2005) A mutation in the Icsbp1 gene causes susceptibility to infection and a chronic myeloid leukemia-like syndrome in BXH-2 mice. J Exp Med 201:881–890

    Article  PubMed  CAS  Google Scholar 

  • Turcotte K, Gauthier S, Malo D, Tam M, Stevenson MM, Gros P (2007) Icsbp1/IRF-8 is required for innate and adaptive immune responses against intracellular pathogens. J Immunol 179:2467–2467

    PubMed  CAS  Google Scholar 

  • Vazquez-Torres A, Vallance BA, Bergman MA, Finlay BB, Cookson BT, Jones-Carson J, Fang FC (2004) Toll-like receptor 4 dependence of innate and adaptive immunity to Salmonella: importance of the Kupffer cell network. J Immunol 172:6202–6208

    PubMed  CAS  Google Scholar 

  • Verduyn Lunel FM, Meis JF, Voss A (1999) Nosocomial fungal infections: candidemia. Diagn Microbiol Infect Dis 34:213–220

    Article  PubMed  CAS  Google Scholar 

  • Vidal S, Tremblay ML, Govoni G, Gauthier S, Sebastiani G, Malo D, Skamene E, Olivier M, Jothy S, Gros P (1995) The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med 182:655–666

    Article  PubMed  CAS  Google Scholar 

  • Vidal SM, Malo D, Vogan K, Skamene E, Gros P (1993) Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73:469–485

    Article  PubMed  CAS  Google Scholar 

  • Vidal SM, Pinner E, Lepage P, Gauthier S, Gros P (1996) Natural resistance to intracellular infections: Nramp1 encodes a membrane phosphoglycoprotein absent in macrophages from susceptible (Nramp1 D169) mouse strains. J Immunol 157:3559–3568

    PubMed  CAS  Google Scholar 

  • Watson J, Riblet R (1974) Genetic control of responses to bacterial lipopolysaccharides in mice. I. Evidence for a single gene that influences mitogenic and immunogenic respones to lipopolysaccharides. J Exp Med 140:1147–1161

    Article  PubMed  CAS  Google Scholar 

  • Watson J, Riblet R, Taylor BA (1977) The response of recombinant inbred strains of mice to bacterial lipopolysaccharides. J Immunol 118:2088–2093

    PubMed  CAS  Google Scholar 

  • Watson J, Kelly K, Largen M, Taylor BA (1978) The genetic mapping of a defective LPS response gene in C3H/HeJ mice. J Immunol 120:422–424

    PubMed  CAS  Google Scholar 

  • Weinstein DL, Lissner CR, Swanson RN, O’Brien AD (1986) Macrophage defect and inflammatory cell recruitment dysfunction in Salmonella susceptible C3H/HeJ mice. Cell Immunol 102:68–77

    Article  PubMed  CAS  Google Scholar 

  • Wetsel RA, Fleischer DT, Haviland DL (1990) Deficiency of the murine fifth complement component (C5). A 2-base pair gene deletion in a 5ë-exon. J Biol Chem 265:2435–2440

    PubMed  CAS  Google Scholar 

  • Wilkinson RJ, Llewelyn M, Toossi Z, Patel P, Pasvol G, Lalvani A, Wright D, Latif M, Davidson RN (2000) Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. Lancet 355:618–621

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (2000) The world health report 2000. Health systems: improving performance. WHO, Geneva

    Google Scholar 

  • World Health Organization (2002) Global tuberculosis control: surveillance, planning. financing. WHO report. WHO, Geneva

    Google Scholar 

  • Wright EK, Goodart SA, Growney JD, Hadinoto V, Endrizzi MG, Long EM, Sadigh K, Abney AL, Bernstein-Hanley I, Dietrich WF (2003) Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr Biol 13:27–36

    Article  PubMed  CAS  Google Scholar 

  • Yan BS, Kirby A, Shebzukhov YV, Daly MJ, Kramnik I (2006) Genetic architecture of tuberculosis resistance in a mouse model of infection. Genes Immun 7:201–210

    Article  PubMed  CAS  Google Scholar 

  • Yap GS, Sher A (2002) The use of germ line-mutated mice in understanding host-pathogen interactions. Cell Microbiol 4:627–634

    Article  PubMed  CAS  Google Scholar 

  • Young DB, Duncan K (1995) Prospects for new interventions in the treatment and prevention of mycobacterial disease. Annu Rev Microbiol 49:641–673

    Article  PubMed  CAS  Google Scholar 

  • Zaharik ML, Vallance BA, Puente JL, Gros P, Finlay BB (2002) Host-pathogen interactions: host resistance factor Nramp1 up-regulates the expression of Salmonella pathogenicity island-2 virulence genes. Proc Natl Acad Sci USA 99:15705–15710

    Article  PubMed  CAS  Google Scholar 

  • Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE, Kuida K, Mariathasan S, Dixit VM, Flavell RA, et al (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7:318–325

    Article  PubMed  CAS  Google Scholar 

  • Zhou D, Hardt WD, Galan JE (1999) Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island. Infect Immun 67:1974–1981

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marquis, J.F., Gros, P. (2008). Genetic Analysis of Resistance to Infections in Mice: A/J meets C57BL/6J. In: Beutler, B. (eds) Immunology, Phenotype First: How Mutations Have Established New Principles and Pathways in Immunology. Current Topics in Microbiology and Immunology, vol 321. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75203-5_2

Download citation

Publish with us

Policies and ethics