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Abstract. Biometrics is susceptible to non-revocable and privacy invasion 
problems. Multiple Random Projections (MRP) was introduced as one of the 
cancellable biometrics approaches in face recognition to tackle these issues. 
However, this technique is applicable only to 1D fixed length biometric feature 
vector but failed in varying size feature, such as speech biometrics. Besides, 
simple matching metric that used in MRP unable to offer a satisfactory 
verification performance. In this paper, we propose a variant of MRP, coined as 
Probabilistic Random Projections (PRP) in text-independent speaker 
verification. The PRP represents speech feature in 2D matrix format and 
speaker modeling is implemented through Gaussian Mixture Model. The 
formulation is experimented under two scenarios (legitimate and stolen token) 
using YOHO speech database. Besides that, desired properties such as one-way 
transformation and diversity are also examined. 

Keywords: Speaker verification, Cancellable biometrics, Probabilistic Random 
Projections. 

1   Introduction 

Although biometrics is a powerful tool against repudiation and has been widely 
deployed in various security systems, the biometric characteristics are largely 
immutable, resulting in permanent biometric compromise. Cancellable biometrics was 
introduced by Ratha et al. [1] in storing a transformed version of the biometric 
template and provides higher privacy level by allowing multiple templates to be 
associated with the same biometric data. This helps to promote non-linkability of 
user’s data stored across various databases. Basically, a good cancellable biometrics 
formulation must fulfill the following requirements: 

1. Diversity: The same cancellable template cannot be used in two different 
applications. 

2. Reusability: Straightforward revocation and reissue in the event of compromise. 
3. Non-invertibility of template computation to prevent recovery of biometrics. 
4. Performance: The cancellable biometric template should not deteriorate the 

recognition performance. 
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The details survey of various cancellable biometrics constructs can be found in [2]. 
In this paper, we focus only on the constructs which combine external factors such as 
tokenized random data with biometrics. Soutar et al. [3] first proposed a cancellable 
biometrics generated from fingerprints using optical computing techniques. The idea 
is to create identification codes, which are completely independent to the biometric 
data and can be easily modified and updated in the future. The templates consisted of 
correlation patterns derived from training images, which are subsequently mixed with 
random data to generate identification codes. However, the scheme was not explained 
in a satisfactory manner regarding the cryptographic security aspects of the 
transformations where no related results can be found. Teoh et al. [4] introduced a 
cancelable biometrics/key via inner product between randomized token and biometric 
data with quantization. This method is advantageous in comparison to that of Soutar 
et al since the transformation is a one-way process. Unfortunately, their formulation 
suffered from the scenario when the genuine token was stolen and used by the 
imposter to claim as the genuine user (stolen-token scenario). In this case, the 
recognition performance becomes poorer. This against the fourth criteria of 
cancellable biometrics.  

Savvides et al. [5] proposed a cancellable biometrics scheme which encrypted the 
training images by synthesizing a correlation filter for biometric authentication. They 
demonstrated that convolving the training images with any random convolution 
kernel prior to building the biometric filter does not change the resulting correlation 
output peak-to-sidelobe ratios, thus preserving the authentication performance. 
Despite of that, the security will be jeopardized via a deterministic deconvolution with 
a known random kernel. Chong et al. [6] presented a work by utilizing multi-space 
random mapping to formulate a dual-factor speaker recognition system which 
combines speaker biometrics and user-specific token, but no report was given on the 
performance in stolen-token scenario. Note that Soutar et al. and Savvides et al. 
applied a set of common random numbers for all users whereas Teoh et al. and Chong 
et al. are using user-specific random numbers. The former aimed to conceal the 
biometrics data whereas the later utilized token’s randomness for performance 
enhancement. 

Recently, Teoh et al. [7] introduced the Random Multispace Quantization (RMQ), 
as an analytic mechanism for BioHash in face recognition, where the process is 
carried out by the non-invertible random projection of biometric feature and 
quantization. RMQ can be revoked through the pseudo-random numbers (PRN) 
replacement so that a new template can be generated instantly. When RMQ does not 
involve the quantization process, the formulation is named as Multiple Random 
Projections (MRP) [9]. Performance of MRP is improved through the projection from 
feature domain to a class-specified random subspace. Thus, the intra-class variations 
are preserved and enhance the inter-class variations. They inferred that the 
recognition performance is retained as sole biometrics performance in stolen-token 
scenario. This is accomplished through the choice of dissimilarity metric - normalized 
dot product that governs the statistic preservation transformation. 

In this paper, we extend the MRP for speaker verification by using the 2D 
Principle Component Analysis Gaussian Mixture Model (2DPCA-GMM) [8] in 
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speaker modeling instead of using normalized dot product. We name this method as 
Probabilistic Random Projections (PRP). Specifically, we remove the limitation of 
MRP, which is applicable only to fixed length 1D feature vectors. This is important 
because speech feature is varied in size due to the recording time length and it is 
normally represented in 2D matrix format. Beside that, we show that probabilistic 
treatment of MRP still survives in stolen-token scenario, subjected to certain 
condition. We also examine the diversity property of PRP. 

This paper is organized as followed: Section 2 presents the brief introduction of 
Multispace Random Projections. Section 3 explains the Probabilistic Random 
Projections method. The experimental results and discussion are given in Section 4. 
The conclusion and future works are provided in Section 5.  

2   Brief Reviews of Multispace Random Projections (MRP) 

Multiple Random Projections (MRP) comprises two stages: (a) feature extraction and 
(b) random projections. In feature extraction stage, the individual’s 1D feature vector, 

x d∈ ℜ , with length d is extracted. The feature vector is then projected onto a random 

subspace, R xm d∈ ℜ , m<d through y= (1/ )m Rx m∈ℜ . R is generated from the 

external sources such as pseudo-random numbers (PRN). During verification, the 
feature vector is mixed with genuine PRN and the resulting vector is compared with 
the enrolled template by using the normalized dot product.  

Since MRP performs on user-specific basis; in the real world application, we 
should consider two different scenarios:  

1. Legitimate Token: When the genuine x is concealed with R, which is generated 
by his specific PRN. 

2. Stolen Token: in which an imposter has access genuine R and used by the 
imposter to claim as the genuine user. 

We summarize the performance behavior of above two scenarios by using the 
genuine-imposter distribution as shown in Fig. 1. 

In general, the accuracy of the biometrics system is determined by how much 
overlapping there is between the two distributions - genuine and imposter 
distributions. The larger of overlapping of two distributions, the poorer of system will 
be and vice versa. For the MRP in all scenarios, it shows that the statistical properties 
– mean and standard deviation of genuine distribution are preserved just like in the 
feature vector level (original system without random projection). On the other hand, 
imposter distribution is peaked at 1 and the standard deviation is equal to 1/√m in 
scenario 1 (Legitimate Token) by using normalized dot-product as matcher. This 
echoes that the clear separation of the genuine-imposter distribution can be attained, 
and hence near to zero error rate if m is sufficiently large as depicted in Fig. 1. 
However, in the second scenario, the inter-class variation shall revert to its original 
state in feature vector level and hence the performance is retained like before random 
projection is performed when m<d. 
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Fig. 1. Genuine-Imposter distributions for MRP 

3   Probabilistic Random Projections 

Probabilistic Random Projections (PRP) consists of three stages: (a) feature 
extraction (b) random projection (c) probabilistic modeling. The block diagram of 
Probabilistic Random Projections in speaker verification system is shown in  
Fig. 2. 

The individual’s feature matrix, X xq r∈ ℜ  is first extracted from the preprocessed 
framed speech signal through Linear Predictive Coding [10], where q represents the 
order of feature coefficient and r represents the frame number. Note that r is varied 
according to the recording length. Then, 2D Principal Component Analysis is used to 

compress X, hence, W xp r∈ ℜ  where p≤q. 
The 2D-PCA feature, W is further projected onto a random subspace as determined 

from an externally derived PRN, R mxp∈ ℜ , where m≤p. The user-specific random-

projected vector, Y xm r∈ℜ is obtained through the random projection process which is 
defined as: 

Y = RW (1) 

The non-invertible property of Y can be assessed by referring the equation (1). Y can 
be regarded as a set of underdetermined systems of linear equations (more unknowns 
than equations). Therefore, it is impossible to find the exact values of all the elements 
in W by solving an underdetermined linear equation system in Y = κRW if m<p, 
based on the premise that the possible solutions are infinite.  
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Fig. 2. Block diagram of Probabilistic Random Projections in speaker verification system 

In the probabilistic modeling stage, the random-projected vector Y is fed into a 
Gaussian Mixture Model (GMM) [11] to construct a probabilistic speaker model. The 
speaker model produced by each speaker, λ is located in different random subspace. 
The Gaussian mixture density is computed by a weighted sum of M component 

densities defined as
1

( | ) ( )
M

k kk
p m b

=
=∑Y Yλ , where M is the Gaussians mixture order. 

Mixture weights for Gaussian are represented by mk, which satisfy the constraints 

1
1

M

kk
m

=
=∑  and bk(•), is a Gaussian function N(μk, Σk) with mean vector μk and 

covariance, Σk. Each speaker is parameterized by its mixture weights, mean vectors 
and covariance matrices as λk = {mk, μk, Σk}. GMM is vital to resolve the varying 
matrix size problem in 2D-PCA features that is not possible to be handled by simple 
metric used in [7]. 

During verification, the claimed speaker will present his speech biometrics and 
personal PRN. The feature extracted from the test sample will be projected to the 
user-specific random subspace generated from the personal PRN sequence from the 
claimed speaker. This new random-projected feature is then input into GMM for 
probabilistic matching. A likelihood ratio test is used to produce a match score. If 
match score is larger than the decision threshold, the claimed speaker is accepted as a 
true user and otherwise. As PRP is inherited from the MRP formulation, we shall 
consider two performance scenarios that mentioned in section 2. 
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4   Experiments and Discussion 

The experiments are conducted by using YOHO speech corpus [12] for text-
independent speaker verification. The details of the database are shown in Table 1. 
The database consists of i=138 speakers and 13 samples each. In the experiment, 5 
samples of each speaker are randomly selected for training while the others j=8 
samples are used for testing. The speech signal is blocked into 240 speech samples 
per frame with 160 overlapped with adjacent frames. The Linear Predictive (LP) 
cepstrum with Hamming Window is used to extract the speech feature set. The 
dimension of speech feature set is qxr, where q is Linear Predictive Coefficients 
(LPC) order which is fixed to 30 and r refers to the number of frames. Gaussian 
mixture order is set to 20. Universal Background Model (UBM) approach is adopted 
to build the speaker background model. The resulting log scores are normalized so 
that they are within the range [0 1].  

Table 1. Database used in the experiments 

Number of speakers 138 
Male : Female 106 : 32 
Training speech sample per speaker 5 
Test speech sample per speaker 8 
Average duration of speech sample 4 sec per speech sample 

Sampling frequency 8kHz 

The system performance will be evaluated by using False Accept Rate (FAR), 
False Reject Rate (FRR) and Equal Error Rate (EER). The EER is obtained when the 
FAR and the FRR are equal. FRR is the rate in which the system incorrectly rejects a 
valid verification attempt and FAR is the rate in which the system wrongly accepts an 
invalid attempt.  

For the imposter distribution in the FAR calculation, the first speech feature in the 
test set is fed into the speaker model, λ of all other speakers, and the same process is 
repeated for subsequent speech feature. Thus, it yields a total of 151248 (ix(i-1)xj) 
imposter probabilistic scores. For the genuine speaker distribution in the FRR test, 
each speech feature is fed into their corresponding speaker model, λ leading to 1104 
(ixj) genuine probabilistic scores. We repeat the same process 20 times and the results 
are averaged to reduce the statistical frustration caused by the different random 
numbers. 

We fix 2D PCA row dimension, p=30. In this paper, PRP-m and PRPs-m denotes 
PRP in genuine-token and stolen-token scenarios, respectively with various m≤p row 
dimensions (5, 10, 15, 20, 25, 27, 29 and 30). Table 2 shows the performance 
comparisons of 2DPCA-GMM, PRP-m, PRPs-m for various m. It is clearly shown 
that the PRP significantly outperforms the original method (2DPCA-GMM in this 
context). PRP attains zero EER when m increases beyond m=10, as what we expected 
to see in all user-specific token mixing algorithms [4][7]. 
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For the stolen-token case, we take the worst scenario where the imposters always 
manage to steal the genuine token. In other words, only one set of PRN is applied to 
all speech samples and the feeding is done according to the imposter match described 
above. In Table 2, we observe the degraded performance of PRPs-m as compared to 
PRP-m. However, PRPs-m with EER=5.96% (m=29) and EER=6.43 % (m=27) are 
close to 2DPCA-GMM with EER=5.78% when m is slightly less than p. In other 
words, PRPs-m reverts the system to its original state when m≈p. From Table 3, it is 
showed that the imposter distribution of mean and variance (0.5640 and 0.0110) for 
PRPs-m are close to the 2DPCA-GMM with mean and variance (0.5628 and 0.0118), 
when m=29. Similar result has been seen in the genuine distribution where the mean 
and variance (0.7880 and 0.0055) of PRPs-m are close to the mean and variance of 
2DPCA-GMM (0.7937 and 0.0057), when m=29. This indicates that the preservation 
of genuine-imposter distribution is valid when m≈p. By setting the m slightly less than 
p, the performance will be retained and this does not jeopardize the condition of non-
invertibility. Similar result is also presented in MRP [7] which utilizes the normalized 
dot-product as the matching metric. In PRP, we employ the probabilistic score, which 
is derived from GMM. Although different matching techniques are employed, both 
methods lead to preservation of the intra-class variations (genuine distribution) as 
well as inter-class variations (imposter distribution). It is also depicted in Fig. 3 where 
the separation of the genuine-imposter class distribution for 2DPCA-GMM and PRPs-
m are almost identical. 

To fulfill the diversity requirement of cancellable biometrics, we examine whether 
the PRP with PRN A and PRP with PRN B (both with same speech feature) are 
associated. This can be done by using Pairwise Independent Test. We mix the same 
speech feature with different PRN and the scores generation procedure is followed 
 

Table 2. Performance comparison for 2DPCA-GMM, PPR-m, PRPs-m 

 m FAR(%) FRR(%) EER(%) 
2DPCA-GMM - 5.76 5.79 5.78 
PRP-m 5 1.65 1.63 1.64 
 10 0.03 0 0.02 
 15 0 0 0 
 20 0 0 0 
 25 0 0 0 
 27 0 0 0 
 29 0 0 0 
 30 0 0 0 
PRPs-m 5 15.89 15.94 15.92 
 10 12.85 12.95 12.90 
 15 10.33 10.41 10.37 
 20 8.76 9.10 8.93 
 25 7.80 8.11 7.96 
 27 6.12 6.73 6.43 
 29 5.81 6.11 5.96 
 30 5.69 5.70 5.70 
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Table 3. Statistic measurement for 2DPCA-GMM and PRPs-m (stolen-token scenario) 

 m gμ  iμ  2
gσ  2

iσ  

2DPCA-GMM - 0.7937 0.5628 0.0057 0.0118 
PRPs-m 5 0.8205 0.7054 0.0031 0.0066 

 10 0.7700 0.5794 0.0054 0.0105 
 15 0.7784 0.5674 0.0055 0.0110 
 20 0.8002 0.5842 0.0051 0.0107 
 25 0.7895 0.5680 0.0054 0.0109 
 27 0.7787 0.5736 0.0053 0.0109 
 29 0.7880 0.5640 0.0055 0.0110 
 30 0.7964 0.5620 0.0058 0.0121 

(a)  (b)  

Fig. 3. Genuine and Imposter class distribution for (a) 2DPCA-GMM and (b) PRPs-27 
(Probabilistic scores were normalized to [0-1] for better visualization purpose) 

 

Fig. 4. Pairwise Independent Test of PRP 
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exactly by the imposter scores collection as described above. As shown in Fig. 4, the 
mean and standard deviation of collected scores are -1483.4 and 373.1, respectively. 
As the histogram closely approaches the independent and identically distributed (i.i.d) 
random variables drawn from Gaussian distribution, N(-1610.2, 407.3), we can 

conclude that the PRP is pairwise independent. This implies that the refreshed PRP 
has almost no correlation with old PRP, and hence random number refreshment is 
equivalent to issue a new template for the user. 

From the above findings, we observed that PRP fulfills the requirement of 
cancellable biometrics in term of performance, even in stolen-token scenario whereby 
the performance is retained as at feature vector level. In practical usage, we should set 
the system threshold t, which is used to decide the acceptance/rejection of the users 
according to the feature vector level performance (or stolen-token performance 
profile), instead of other scenarios. Nevertheless, recall that our results are important 
contribution to preserving the privacy of the speech feature and enable the enrolled 
template to be replaced in the event of template compromise. 

5   Conclusions and Future Works 

In this paper, we proposed a cancellable biometrics formulation, coined as 
Probabilistic Random Projections (PRP) which extends the MRP by employing the 
2D Principal Component Analysis Gaussian Mixture Model. The PRP represents the 
speech feature in the 2D matrix format and hence, removes the limitation of MRP, 
which is only applicable to 1D fixed length feature vector. Besides that, the 
probabilistic modeling leads to better performance in speaker verification. The 
projection is non-invertible. The irrevocable and non-replacement issue of biometrics 
can be solved through the PRN replacement once the biometric template is 
compromised. Experiments showed that PRP survives in stolen-token attacks when 
the random subspace dimension is near to the original feature dimension. Thus, PRP 
functions well without compromising the verification performance in the event of 
compromised token. We also showed that PRP fulfilled another important property of 
cancellable biometrics, ie. diversity property. Our future work will be focusing on the 
theoretical justification on why the statistical preservation transformation can be 
achieved through the probabilistic scores that derived from GMM. 
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