Skip to main content

Highly Spin-Polarized Tunneling in Fully Epitaxial Magnetic Tunnel Junctions with a Co-Based Full-Heusler Alloy Thin Film and a MgO Barrier

  • Chapter
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 47))

Abstract

Co-based full-Heusler alloy (Co2YZ) thin films are highly preferable ferromagnetic materials in spintronic devices because of the half-metallic ferromagnetic nature at room temperature (RT) theoretically predicted for some of these alloys. We developed fully epitaxial magnetic tunnel junctions (MTJs) that have a Co2 YZ thin film of Co2Cr0.6Fe0.4Al (CCFA), Co2MnSi (CMS), or Co2MnGe (CMG) as a lower electrode, and a MgO tunnel barrier, and have demonstrated a relatively high tunnel magnetoresistance (TMR) ratio of 109% at RT (317% at 4.2K) for CCFA/MgO/Co50Fe50 MTJs and a TMR ratio of 90% at RT (192% at 4.2K) for CMS/MgO/Co50Fe50 MTJs. A high tunneling spin polarization of 0.88 at 4.2K was estimated for epitaxial CCFA films with the B2 structure. The demonstrated high TMR ratios confirmed that fully epitaxial MTJs with a MgO tunnel barrier are promising as a key device structure for fully utilizing the high spin polarization of Co-based full-Heusler alloy thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daunghton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).

    Article  ADS  Google Scholar 

  2. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).

    Article  ADS  Google Scholar 

  3. C. Felser, G. H. Fecher, and B. Balke, Angew. Chem., Int. Ed. 46, 668 (2007).

    Article  Google Scholar 

  4. K. Inomata, S. Okamura, R. Goto, and N. Tezuka, Jpn. J. Appl. Phys., Part 2 42, L419 (2003).

    Article  ADS  Google Scholar 

  5. N. Tezuka, N. Ikeda, S. Sugimoto, and K. Inomata, Appl. Phys. Lett. 89, 252508 (2006).

    Google Scholar 

  6. S. Kämmerer, A. Thomas, A. Hütten, and G. Reiss, Appl. Phys. Lett. 85, 79 (2004).

    Article  ADS  Google Scholar 

  7. Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, and H. Kubota, Appl. Phys. Lett. 88, 192508 (2006).

    Article  ADS  Google Scholar 

  8. T. Marukame, T. Kasahara, K.-i. Matsuda, T. Uemura, and M. Yamamoto, Jpn. J. Appl. Phys., Part 2 44, L521 (2005).

    Article  ADS  Google Scholar 

  9. M. Yamamoto, T. Marukame, T. Ishikawa, K Matsuda, T. Uemura, and M. Arita, J. Phys. D: Appl. Phys. 39, 824 (2006).

    Article  ADS  Google Scholar 

  10. T. Marukame, T. Ishikawa, K.-i. Matsuda, T. Uemura, and M. Yamamoto, J. Appl. Phys. 99, 08A904 (2006).

    Article  Google Scholar 

  11. T. Marukame, T. Ishikawa, K.-i. Matsuda, T. Uemura, and M. Yamamoto, Appl. Phys. Lett. 88, 262503 (2006).

    Article  ADS  Google Scholar 

  12. T. Ishikawa, T. Marukame, H. Kijima, K.-i. Matsuda, T. Uemura, M. Arita, and M. Yamamoto, Appl. Phys. Lett. 89, 192505 (2006).

    Article  ADS  Google Scholar 

  13. T. Marukame, T. Ishikawa, S. Hakamata, K.-i. Matsuda, T. Uemura, and M. Yamamoto, Appl. Phys. Lett. 90, 012508 (2007).

    Article  ADS  Google Scholar 

  14. T. Marukame and M. Yamamoto, J. Appl. Phys. 101, 083906 (2007).

    Article  ADS  Google Scholar 

  15. S. Hakamata, T. Ishikawa, T. Marukame, K.-i. Matsuda, T. Uemura, and M. Yamamoto, J. Appl. Phys. 101, 09J513 (2007).

    Article  Google Scholar 

  16. S. Ishida, S. Fujii, S. Kashiwagi, and S. Asano, J. Phys. Soc. Jpn. 64, 2152 (1995).

    Article  ADS  Google Scholar 

  17. S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B 66, 094421 (2002).

    Article  ADS  Google Scholar 

  18. P. J. Webster, J. Phys. Chem. Solids 32, 1221 (1971).

    Article  ADS  Google Scholar 

  19. T. Marukame, T. Kasahara, K.-i Matsuda, T. Uemura, and M. Yamamoto, IEEE Trans. Magn. 41, 2603 (2005).

    Article  ADS  Google Scholar 

  20. K.-i. Matsuda, T. Kasahara, T. Marukame, T. Uemura, and M. Yamamoto, J. Cryst. Growth 286, 389 (2006).

    Article  ADS  Google Scholar 

  21. T. Ishikawa, T. Marukame, K.-i. Matsuda, T. Uemura, M. Arita, and M. Yamamoto, J. Appl. Phys. 99, 08J110 (2006).

    Article  Google Scholar 

  22. H. Kijima, T. Ishikawa, T. Marukame, H. Koyama, K. Matsuda, T. Uemura, and M. Yamamoto, IEEE Trans. Magn. 42, 2688 (2006).

    Article  ADS  Google Scholar 

  23. T. Ishikawa, T. Marukame, K.-i. Matsuda, T. Uemura, and M. Yamamoto, IEEE Trans. Magn. 42, 3002 (2006).

    Article  ADS  Google Scholar 

  24. S. S. P. Parkin et al., Nature Mater. 3, 862 (2004).

    Article  ADS  Google Scholar 

  25. M. Jullière, Phys. Lett. A 54, 225 (1975).

    Article  ADS  Google Scholar 

  26. J. Mathon and A. Umerski, Phys. Rev. B 60, 1117 (1999).

    Article  ADS  Google Scholar 

  27. D. J. Monsma and S. S. P. Parkin, Appl. Phys. Lett. 77, 720 (2000).

    Article  ADS  Google Scholar 

  28. W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. Maclaren, Phys. Rev. B 63, 054416 (2001).

    Article  ADS  Google Scholar 

  29. J. Mathon and A. Umerski, Phys. Rev. B 63, 220403R (2001).

    Article  ADS  Google Scholar 

  30. Y. Miura, K. Nagao, and M. Shirai, Phys. Rev. B 69, 144413 (2004).

    Article  ADS  Google Scholar 

  31. Y. Miura, H. Uchida, Y. Oba, K. Nagao, and M. Shirai, to be published in J. Phys.: Condens. Matter.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamamoto, M., Marukame, T., Ishikawa, T., Matsuda, Ki., Uemura, T. (2008). Highly Spin-Polarized Tunneling in Fully Epitaxial Magnetic Tunnel Junctions with a Co-Based Full-Heusler Alloy Thin Film and a MgO Barrier. In: Haug, R. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74325-5_9

Download citation

Publish with us

Policies and ethics