Skip to main content

Interaction of Semiconductor Laser Dynamics with THz Radiation

  • Chapter
Book cover Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 47))

  • 2095 Accesses

Abstract

We discuss the generation and detection of THz radiation with semiconductor diode lasers. First, we analyze the generation of THz radiation by investigating a semiconductor laser in an external cavity arrangement that supports two color operation with tunable difference frequency. Second, the opposite process, i.e., THz detection with diode lasers is investigated. For that purpose, we inject THz radiation into the active region of a diode laser and analyze its dynamics under this injection. We observe a voltage variation over the p-n-junction depending on the injected THz power and compare the measured signal to the response of a standard Golay cell. Finally, we review our results with particular emphasis on completely diode-laser based THz imaging or spectroscopy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Sherwin, Nature 420, 131 (2002)

    Article  ADS  Google Scholar 

  2. P. Siegel, IEEE Trans. Microwave Theory Tech. 50(3), 910 (2002)

    Article  ADS  Google Scholar 

  3. R. Köhler, A. Tredicucci, C. Mauro, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, Appl. Phys. Lett. 84, 1266 (04)

    Google Scholar 

  4. E. Bründermann, D. R. Chamberlin, E. E. Haller, Appl. Phys. Lett. 76(21), 2991 (2000)

    Article  ADS  Google Scholar 

  5. G. Carr, M. Martin, W. McKinney, K. Jordan, G. Neil, G. Williams, Nature 420, 153 (2002)

    Article  ADS  Google Scholar 

  6. B. Williams, S. Kumar, Q. Hu, J. Reno, Electron. Lett. 40, 431 (2004)

    Article  Google Scholar 

  7. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, Appl. Phys. Lett. 82, 1015 (2003)

    Article  ADS  Google Scholar 

  8. B. Williams, S. Kumar, Q. Hu, J. Reno, Opt. Express 13, 3331 (2005)

    Article  ADS  Google Scholar 

  9. E. Bründermann, in: Long-wavelength Infrared Semiconductor Lasers (Wiley and Sons, New York, 2004)

    Book  Google Scholar 

  10. T. Crowe, W. Bishop, D. Porterfield, J. Hesler, Proceedings of the joint 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics p. 85 (2004)

    Google Scholar 

  11. K. Kawase, J. Shikata, H. Ito, J. Phys. D, Appl. Phys. 35, R1 (2002)

    Article  ADS  Google Scholar 

  12. K. Sakai (ed.), Terahertz Optoelectronics, Topics in Applied Physics, vol. 97 (Springer, 2005)

    Google Scholar 

  13. Y. Sasaki, A. Yuri, K. Kawase, H. Ito, Appl. Phys. Lett. 81, 3323 (2002)

    Article  ADS  Google Scholar 

  14. S. Verghese, K. McIntosh, S. Calawa, W. Dinatale, E. Duerr, K. Molvar, Appl. Phys. Lett. 73(26), 3824 (1998)

    Article  ADS  Google Scholar 

  15. B. Saleh, Fundamentals of Photonics (John Wiley and Sons Inc., New York, 1991)

    Book  Google Scholar 

  16. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. Stark, Q. Wu, X. Zhang, J. Federici, Appl. Phys. Lett. 73(4), 444 (1998)

    Article  ADS  Google Scholar 

  17. M. Tani, P. Gu, M. Hyodo, K. Sakai, T. Hidaka, Optical and Quantum Electronics 32, 503 (2000)

    Article  Google Scholar 

  18. S. Roh, T. Yeoh, R. Swint, A. Huber, J. Woo, J. Coleman, IEEE Phot. Tech. Lett. 12, 1307 (2000)

    Article  ADS  Google Scholar 

  19. S. Hoffmann, M. R. Hofmann, Laser and Photon. Rev. 1, 44 (2007)

    Article  Google Scholar 

  20. P. Richards, J. Appl. Phys. 76(1), 1 (1994)

    Article  ADS  Google Scholar 

  21. P. Golay, Rev. Sci. Instr. p. 357 (1946)

    Google Scholar 

  22. H. Hartfuss, T. Geist, M. Hirsch, Plasma Phys. Control. Fusion 39, 1693–1769 (1997)

    Article  ADS  Google Scholar 

  23. O. Hachenberg, B. Vowinkel, Technische Grundlagen der Radioastronomie (Bibliographisches Institut, 1982)

    Google Scholar 

  24. T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, K. Donhuijsen, Electronics Letters 37(24), 1461 (2001)

    Article  Google Scholar 

  25. Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, Y. Ogawa, IEEE Photon. Technol. Lett. 9, 25 (1997)

    Article  ADS  Google Scholar 

  26. R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, J. E. Bowers, IEEE J. Quantum Electron. 28, 1992 (1992)

    Article  ADS  Google Scholar 

  27. M. Stix, M. Kesler, E. Ippen, Appl. Phys. Lett. 48, 1722 (1986)

    Article  ADS  Google Scholar 

  28. K. L. Hall, G. Lenz, E. P. Ippen, U. Koren, G. Raybon, Appl. Phys. Lett. 61, 2512 (1992)

    Article  ADS  Google Scholar 

  29. J. Mark, J. Mørk, Appl. Phys. Lett. 61, 2281 (1992)

    Article  ADS  Google Scholar 

  30. C. K. Sun, H. K. Choi, C. A. Wang, J. G. Fujimoto, Appl. Phys. Lett. 62, 747 (1992)

    Article  ADS  Google Scholar 

  31. A. Mecozzi, J. Mørk, IEEE J. Selected Topics of Quantum Electronics 3, 1190 (1997)

    Article  Google Scholar 

  32. A. D’ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall-Ara, G. Guekos, J. Eckner, Appl. Phys. Lett. 65, 2633–2635 (1994)

    Article  ADS  Google Scholar 

  33. M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, J. Moloney, Opt. Comm. 207, 261 (2002)

    Article  ADS  Google Scholar 

  34. S. Hoffmann, M. Hofmann, M. Kira, S. Koch, Semiconductor Science and Technology 20, 205 (2005)

    Article  ADS  Google Scholar 

  35. M. Matus, M. Kolesik, J. Moloney, M. Hofmann, S. Koch, JOSA B 21, 1758 (2004)

    Article  ADS  Google Scholar 

  36. S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, K. Sakai, Appl. Phys. Lett. 84(18), 3585 (2004)

    Article  ADS  Google Scholar 

  37. C. Brenner, S. Hoffmann, M. R. Hofmann, M. Salhi, M. Koch, in CLEO/QELS (2006), p. CTuL6

    Google Scholar 

  38. J. T. Steiner et al. in this issue.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brenner, C., Hoffmann, S., Hofmann, M.R. (2008). Interaction of Semiconductor Laser Dynamics with THz Radiation. In: Haug, R. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74325-5_15

Download citation

Publish with us

Policies and ethics