Skip to main content

Structural and Magnetic Properties of Transition Metal Nanoparticles from First Principles

  • Chapter
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 47))

Abstract

Until recently, the simulation of transition metal particles in the nanometer range was only feasible with semi-empirical approaches and classical molecular dynamics simulations. However, the close interrelation of electronic and structural properties often leaves no alternative to a fully quantum mechanical treatment. The evolution of modern supercomputer technology nowadays allows the simulation of nanometer-sized objects from first principles in the framework of density functional theory (DFT). A technologically relevant example is the search for ultra-high density magnetic recording media where the decrease of the magnetic grain size competes with the onset of superparamagnetism. Here, Fe-Pt nanoparticles are discussed as a promising solution to the problem due to their large magnetocrystalline anisotropy in the ordered L10 phase. However, in experiment also other, less favorable, structures are observed. Therefore, a systematic ab initio investigation of the morphologies of transition metal nanoparticles with respect to their energetics and magnetism appears highly desirable. Within this contribution, we discuss the results of recent DFT calculations of Fe and Fe-Pt clusters with up to 561 atoms including full geometric optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. A. O’Keefe, C. Hetherington, Y. Wanga, E. Nelson, J. Turner, C. Kisielowski, J.-O. Malm, R. Mueller, J. Ringnald, M. Pan, A. Thust: Sub-Angstrom high-resolution transmission electron microscopy at 300 keV, Ultramicroscopy 89, 215 (2001)

    Article  Google Scholar 

  2. Density functional theory in materials research, MRS Bulletin 31, No. 9, pp. 659–692 (2006)

    Google Scholar 

  3. I. M. L. Billas, A. Châtelain, W. A. de Heer: Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters, Science 265, 1682 (1994)

    Article  ADS  Google Scholar 

  4. J. A. Alonso: Electronic and atomic structure, and magnetism of transition metal clusters, Chem. Rev. 100, 637 (2000)

    Article  Google Scholar 

  5. J. Bansmann, S. H. Baker, C. Binns, J. A. Blackman, J.-P. Bucher, J. Dorantes-Dávila, V. Dupuis, L. Favre, D. Kechrakos, A. Kleibert, K.-H. Meiwes-Broer, G. M. Pastor, A. Perez, O. Toulemonde, K. N. Trohidou, J. Tuaillon, J. Xie: Magnetic and structural properties of isolated and assembled clusters, Surf. Sci. Rep. 56, 189 (2005)

    Article  ADS  Google Scholar 

  6. M. L. Tiago, Y. Zhou, M. M. G. Alemany, Y. Saad, J. R. Chelikowsky: Evolution of magnetism in iron from the atom to the bulk, Phys. Rev. Lett. 97, 147201 (2006)

    Article  ADS  Google Scholar 

  7. F. W. Payne, W. Jiang, L. A. Bloomfield: Magnetism and magnetic isomers in free chromium clusters, Phys. Rev. Lett. 97, 193401 (2006)

    Article  ADS  Google Scholar 

  8. B. W. van de Waal: Stability of face-centered cubic and icosahedral Lennard-Jones clusters, J. Chem. Phys. 90, 3407–3408 (1988)

    Article  Google Scholar 

  9. B. Raoult, J. Farges, M.-F. de Feraudy, G. Torchet: Comparison between icosahedral, decahedral and crystalline Lennard-Jones models containing 500 to 6000 atoms, Phil. Mag. B 60, 881–906 (1989)

    Article  Google Scholar 

  10. J. P. K. Doye, F. Calvo: Entropic effects on the size dependence of cluster structure, Phys. Rev. Lett. 86, 3570 (2001)

    Article  ADS  Google Scholar 

  11. C. L. Cleveland, U. Landmann: The energetics and structure of nickel clusters: Size dependence, J. Chem. Phys. 94, 7376 (1991)

    Article  ADS  Google Scholar 

  12. F. Baletto, R. Ferrando: Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects, Rev. Mod. Phys. 77, 371 (2005)

    Article  ADS  Google Scholar 

  13. D. Weller, A. Moser: Thermal effect limits in ultrahigh-density magnetic recording, IEEE Trans. Magn. 35, 4423 (1999)

    Article  ADS  Google Scholar 

  14. S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287, 1989 (2000)

    Article  ADS  Google Scholar 

  15. M. L. Plumer, J. van Ek, D. Weller (Eds.): The Physics of Ultra-High-Density Magnetic Recording (Springer, Berlin 2001)

    Google Scholar 

  16. S. Sun: Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles, Adv. Mater. 18, 393 (2006)

    Article  Google Scholar 

  17. G. Kresse, J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  18. G. Kresse, J. Furthmüller: From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  19. J. P. Perdew: in P. Ziesche, H. Eschrig (Eds.): Electronic Structure of Solids’ 91 (Akademie Verlag, Berlin 1991)

    Google Scholar 

  20. J. P. Perdew, K. Burke, Y. Wang: Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B 54, 16533 (1996)

    Article  ADS  Google Scholar 

  21. S. H. Vosko, L. Wilk, M. Nusair: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys. 58, 1200 (1980)

    Article  ADS  Google Scholar 

  22. M. E. Gruner, G. Rollmann, A. Hucht, P. Entel: Massively parallel density functional theory calculations of large transition metal clusters, Lecture Series on Computer and Computational Sciences 7, 173 (2006)

    Google Scholar 

  23. D. L. Huber: Synthesis, properties, and applications of iron nanoparticles, Small 1, 482 (2005)

    Article  Google Scholar 

  24. P. Bobadova-Parvanova, K. A. Jackson, S. Srinivas, M. Horoi: Density-functional investigations of the spin ordering in Fe13 clusters, Phys. Rev. B 66, 195402 (2002)

    Article  ADS  Google Scholar 

  25. G. Rollmann, P. Entel, S. Sahoo: Competing structural and magnetic effects in small iron clusters, Comput. Mater. Sci. 35, 275 (2005)

    Article  Google Scholar 

  26. T. Vystavel, G. Palasantzas, S. A. Koch, J. T. M. De Hosson: Nanosized iron clusters investigated with in situ transmission electron microscopy, Appl. Phys. Lett. 82, 197 (2003)

    Article  ADS  Google Scholar 

  27. G. Rollmann, M. E. Gruner, A. Hucht, P. Entel, M. L. Tiago, J. R. Chelikowsky: Shell-wise mackay transformation in iron nano-clusters, submitted for publication

    Google Scholar 

  28. N. A. Besley, R. L. Johnston, A. J. Stace, J. Uppenbrinck: Theoretical study of the structures and stabilities of iron clusters, J. Mol. Struct. (Theochem) 341, 75 (1995)

    Google Scholar 

  29. A. L. Mackay: A dense non-crystallographic packing of equal spheres, Acta Cryst. 15, 916 (1962)

    Article  Google Scholar 

  30. T. Ichikawa: Electron diffraction study of the local atomic arrangement in amorphous iron and nickel films, Phys. Stat. Sol. (a) 19, 707 (1973)

    Article  ADS  Google Scholar 

  31. H. Jónsson, H. C. Andersen: Icosahedral ordering in the Lennard-Jones liquid and glass, Phys. Rev. Lett. 60, 2295 (1988)

    Article  ADS  Google Scholar 

  32. D. Faken, H. Jónsson: Systematic analysis of local atomic structure combined with 3D computer graphics, Comput. Mater. Sci. 2, 279 (1994)

    Article  Google Scholar 

  33. E. Aprà, F. Baletto, R. Ferrando, A. Fortunelli: Amorphization mechanism of icosahedral metal nanoclusters, Phys. Rev. Lett. 93, 065502 (2004)

    Article  ADS  Google Scholar 

  34. K. S. Suslick, S.-B. Choe, A. A. Cichowlas, M. W. Grinstaff: Sonochemical synthesis of amorphous iron, Nature 353, 414 (1991)

    Article  ADS  Google Scholar 

  35. U. Krauss, U. Krey: Local magneto-volume effect in amorphous iron, J. Magn. Magn. Mater 98, L1 (1991)

    Article  ADS  Google Scholar 

  36. R. F. Sabiryanov, S. K. Bose, O. N. Mryasov: Effect of topological disorder on the itinerant magnetism of Fe and Co, Phys. Rev. B 51, 8958 (1995)

    Article  ADS  Google Scholar 

  37. N. P. Kovalenko, Y. P. Krasny, U. Krey: Physics of Amorphous Metals (Wiley-VCH, Berlin 2001)

    Book  Google Scholar 

  38. L. E. Kar’kina, I. N. Kar’kin, Y. N. Gornostyrev: Structural transformations in Fe-Ni-alloy nanoclusters: Results of molecular-dynamic-simulation, Phys. Met. Met. 101, 130 (2006)

    Google Scholar 

  39. A. Fortunelli, A. M. Velasco: Structural and electronic properties of Pt/Fe nanoclusters from EHT calculations, J. Mol. Struct. (Theochem) 487, 251 (1999)

    Google Scholar 

  40. H. Ebert, S. Bornemann, J. Minár, P. H. Dederichs, R. Zeller, I. Cabria: Magnetic properties of Co-and FePt-clusters, Comput. Mater. Sci. 35, 279 (2006)

    Article  Google Scholar 

  41. M. E. Gruner, G. Rollmann, S. Sahoo, P. Entel: Magnetism of close packed Fe147 clusters, Phase Transitions 79, 701 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gruner, M.E., Rollmann, G., Hucht, A., Entel, P. (2008). Structural and Magnetic Properties of Transition Metal Nanoparticles from First Principles. In: Haug, R. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74325-5_10

Download citation

Publish with us

Policies and ethics