Skip to main content

Novel Nanoindentation Techniques and Their Applications

  • Chapter
Applied Scanning Probe Methods X

Part of the book series: Nano Science and Technolgy ((NANO))

  • 1142 Accesses

Abstract

Nanoindentation measurement as one tool in the scanning probe microscope family is the most successful means for evaluating the mechanical properties of small-volume materials, such as thin films, microparticles and multiphase materials. This chapter demonstrates that elastic, elastoplastic and viscoelastic contact solutions permit nanoindentation load–displacement curves to be used to evaluate many kinds of mechanical properties on a nanometer scale. More than four different kinds of convenient and novel nanoindentation techniques for practical purposes are described. The primary emphasis is on how to determine the most frequently used mechanical properties such as hardness and modulus, yield stress, stress–strain curve, and viscoelasticity. Focus is also put on how to employ these methods to various kinds of materials in different application fields. This chapter proposes that all kinds of bulk-scale mechanical properties or characteristics will be easily determined on a nanometer scale by using suitable nanoindentation methods in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meyer E (1908) Z Ver Dtsch Ing 52:645

    CAS  Google Scholar 

  2. Tabor D (1951) The hardness of metals. Oxford University Press, London

    Google Scholar 

  3. Sneddon IN (1965) Int J Eng Sci 3:47

    Article  Google Scholar 

  4. Harding JW, Sneddon IN (1945) Proc Camb Philos Soc 41:12

    Article  Google Scholar 

  5. Hertz H (1881) J Reine Angew Math 92:156

    Google Scholar 

  6. Hertz H (1896) In: Schott J (ed) Miscellaneous papers. Macmillan, London

    Google Scholar 

  7. Timoshenko S (1934) Theory of elasticity. McGraw-Hill, New York

    Google Scholar 

  8. Davies RM (1949) Proc R Soc Lond Ser A 197:416

    Google Scholar 

  9. Pharr GM, Oliver WC, Brotzen FR (1992) J Mater Res 7:613

    Article  CAS  Google Scholar 

  10. Oliver WC, Pharr GM (1992) J Mater Res 7:1564

    Article  CAS  Google Scholar 

  11. Ye J, Kano M, Yasuda Y (2002) Tribol Lett 13:41

    Article  CAS  Google Scholar 

  12. Shimizu S, Kojima N, Ye J (2005) Mater Res Soc Symp Proc 863:B8.15

    Google Scholar 

  13. Bucaille JL, Stauss S, Felder E, Michler J (2003) Acta Mater 51:1663

    Article  CAS  Google Scholar 

  14. Chollacoop N, Dao M, Surech S (2003) Acta Mater 51:3713

    Article  CAS  Google Scholar 

  15. Ogasawara N, Chiba N, Chen X (2005) J Mater Res 20:2225

    Article  CAS  Google Scholar 

  16. Cheng YT, Cheng CM (2000) Surf Coat Technol 133:417

    Article  Google Scholar 

  17. Dao M, Chcolacoop N, Van Vliet KJ, Venkatesh TA, Surech S (2001) Acta Mater 49:3899

    Article  CAS  Google Scholar 

  18. Lu H, Wang B, Ma J, Huang G, Viswanathan H (2003) Mech Time-Depend Mater 7:189

    Article  Google Scholar 

  19. Huang G, Wang B, Lu H (2004) Mech Time-Depend Mater 8:345

    Article  CAS  Google Scholar 

  20. Lee EH, Radok JRM (1960) J Appl Mech 27:438

    Google Scholar 

  21. Bulychev SI, Alekhin VP, Shorshorov MKH, Ternovskii AP, Shnyrev GD (1975) Zavod Lab 41:1137

    CAS  Google Scholar 

  22. Ye J, Shimizu S, Sato S, Kojima N, Noro J (2006) Appl Phys Lett 89:1913

    Google Scholar 

  23. Hay J (1997) Mechanical testing by indentation, course notes. Nano Instruments, Oak Ridge

    Google Scholar 

  24. Pharr GM (1998) Mater Sci Eng A 253:151

    Article  Google Scholar 

  25. Harding DS, Oliver WC, Pharr GM (1995) Mater Res Soc Symp Proc 356:663

    CAS  Google Scholar 

  26. Morton WB, Close LJ (1922) Philos Mag 143:320

    Google Scholar 

  27. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  28. Bhushan B (ed) (1999) Handbook of micro/nanotribology, 2nd edn. CRC, Boca Raton

    Google Scholar 

  29. Li X, Bhushan B (2002) Mater Character 48:11

    Article  CAS  Google Scholar 

  30. Li X, Diao D, Bhushan B (1997) Acta Mater 45:4453

    Article  CAS  Google Scholar 

  31. Li X, Bhushan B (1998) Thin Solid Films 315:214

    Article  CAS  Google Scholar 

  32. Li X, Bhushan B (1999) Thin Solid Films 315:330

    Article  Google Scholar 

  33. Hay J, Bolshakov A, Pharr GM (1999) J Mater Res 14:2296

    CAS  Google Scholar 

  34. Hay J, Bolshakov A, Pharr GM (1998) Mater Res Soc Symp Proc 522:263

    CAS  Google Scholar 

  35. Hay J, Pharr GM (1998) Mater Res Soc Symp Proc 522:39

    CAS  Google Scholar 

  36. Ye J, Kano M, Yasuda Y (2004) Tribol Lett 16:107

    Article  CAS  Google Scholar 

  37. Ye J, Kojima N, Ueoka K, Shimanuki J, Nasuno T, Ogawa S (2004) J Appl Phys 95:3704

    Article  CAS  Google Scholar 

  38. Ye J (2005) Tribology 219:24

    Google Scholar 

  39. Xu ZH, Li XD (2006) Acta Mater 54:1699

    Article  CAS  Google Scholar 

  40. Chen SH, Lui L, Wang TC (2004) Acta Mater 52:1089

    Article  CAS  Google Scholar 

  41. Tho KK, Swaddiwudhipong S, Hua J, Liu ZS (2006) Mater Sci Eng A 421:168

    Article  CAS  Google Scholar 

  42. Choi Y, Van Vliet KJ, Li J, Suresh S (2003) J Appl Phys 94:6050

    Article  CAS  Google Scholar 

  43. Loubet JL, Bauer M, Tonck A, Bec S (1993) Mechanical properties and deformation behavior of materials having ultrafine microstructures. Kluwer, Norwell

    Google Scholar 

  44. Hochstetter G, Jimenez A, Loubet JL (1999) J Macromol Sci Phys B 38:681

    Article  Google Scholar 

  45. Sava T, Tanaka K (2000) J Mater Res 16:3084

    Google Scholar 

  46. Ye J (2006) Paper presented at novel techniques of nanoindentation and their applications, 67th Nissan ARC materials and analysis seminar. Nissan ARC, Yokosuka

    Google Scholar 

  47. Volinsky AA, Moody NR, Gerberich WW (2004) J Mater Res 19:2650

    Article  CAS  Google Scholar 

  48. Ye J, Kojima N, Shimizu S, Burkstrand JM (2005) Mater Res Soc Symp Proc 863:B1.5

    Google Scholar 

  49. Schuh CA, Packard CE, Lund AC (2006) J Mater Res 21:725

    Article  CAS  Google Scholar 

  50. Pethica JB, Oliver WC (1989) Mater Res Soc Symp Proc 130:13

    CAS  Google Scholar 

  51. Syed Asif SA, Pethica JB (1997) Mater Res Soc Symp Proc 436:201

    CAS  Google Scholar 

  52. Shimizu S, Kojima N, Ye J (2006) Paper presented at the 2006 international conference on solid state devices and materials, Yokohama, Japan

    Google Scholar 

  53. Ogasawara N, Chiba N, Chen X (2006) Scr Mater 54:65

    Article  CAS  Google Scholar 

  54. Bowden FP, Tabor D (1950) The friction and lubrications of solids. Oxford University Press, London

    Google Scholar 

  55. Mesarovic SD, Fleck NA (1992) Proc R Soc Lond Ser A 455:2707

    Google Scholar 

  56. Wang L, Rokhlin SI (2005) Int J Solids Struct 42:3807

    Article  Google Scholar 

  57. Wang L, Ganor M, Rokhlin SI (2005) J Mater Rec 20:987

    Article  CAS  Google Scholar 

  58. Yonezu A, Ogawa T, Takemoto M (2006) In: Proceedings of the Asian Pacific conference for fracture and strength, Hainan Island, China, p 319

    Google Scholar 

  59. Tang B, Ngan AHW (2003) J Mater Rec 18:1141

    CAS  Google Scholar 

  60. Cheng L, Xia X, Yu W, Scriven LE, Gerberich WW (2000) J Polym Sci B Polym Phys 38:10

    Article  CAS  Google Scholar 

  61. Shimizu S, Yanagimoto T, Sakai M (1999) J Mater Res 14:4075

    CAS  Google Scholar 

  62. Loubet JL, Lucas BN, Oliver WC (1995) International workshop on instrumental indentation, San Diego

    Google Scholar 

  63. Ting TCT (1966) J Appl Mech 33:845

    Google Scholar 

  64. Ting TCT (1968) J Appl Mech 35:248

    Google Scholar 

  65. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  66. Morris DJ, Cook RF (2005) Int J Fract 136:237

    Article  Google Scholar 

  67. Li XD, Diao DF, Bhushan B (1997) Acta Mater 45:4453

    Article  CAS  Google Scholar 

  68. Volinsky AA, Vella JB, Gerberich WW (2003) Thin Solid Films 429:201

    Article  CAS  Google Scholar 

  69. Suresh S, Glannakopoulos AE (1998) Acta Mater 46:5755

    Article  CAS  Google Scholar 

  70. Tayer CA, Wayne MF, Chiu WKS (2003) Thin Solid Films 429:190

    Article  CAS  Google Scholar 

  71. Xu ZH, Li XD (2005) Acta Mater 53:1913

    CAS  Google Scholar 

  72. Ye J, Kojima N, Ueoka K, Shimanuki J, Nasuno T, Ogawa S (2004) J Appl Phys 95:3704

    Article  CAS  Google Scholar 

  73. Ye J, Ueoka K, Kojima N, Shimanuki J, Shimada M, Ogawa S (2004) Mater Res Soc Symp Proc 812:F5.6

    Google Scholar 

  74. Ye J, Kano M, Yasuda Y (2004) Tribol Lett 16:107

    Article  CAS  Google Scholar 

  75. Ye J, Ueoka K, Kano M, Yasuda Y, Okamoto Y, Martin JM (2005) World tribology congress III, Washington

    Google Scholar 

  76. Daugela A and Wyrebek JT (2000) IEEE Trans Magn 581

    Google Scholar 

  77. Tymiak NI, Daugela A, Wyrobek TJ, Warren OL (2003) J Mater Rec 18:784

    CAS  Google Scholar 

  78. Tymiak NI, Daugela A, Wyrobek TJ, Warren OL (2004) Acta Mater 52:553

    Article  CAS  Google Scholar 

  79. Ruffell S, Bradby JB, Williams J (2006) NanoECR. Hysitron application note. Hysitron, Minneapolis

    Google Scholar 

  80. Minor AM, Lilleodden ET, Jin M, Stach EA, Chrzan DC, Morris JW (2005) Philos Mag 85:323

    Article  CAS  Google Scholar 

  81. Minor AM, Morris JW, Stach EA (2001) Appl Phys Lett 79:1625

    Article  CAS  Google Scholar 

  82. Stach EA, Freeman T, Minor AM, Owen DK, Cummings J, Wall MA, Chraska T, Hull R, Morris JW, Zettl A, Dahman U (2001) Microsc Microanal 7:501

    Google Scholar 

  83. Schuh CA, Mason JK, Lund AC (2005) Nat Mater 4:617

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ye, J. (2008). Novel Nanoindentation Techniques and Their Applications. In: Bhushan, B., Tomitori, M., Fuchs, H. (eds) Applied Scanning Probe Methods X. Nano Science and Technolgy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74085-8_10

Download citation

Publish with us

Policies and ethics