Skip to main content

Decision Making in Multi-UAVs Systems: Architecture and Algorithms

  • Chapter
Multiple Heterogeneous Unmanned Aerial Vehicles

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 37))

Abstract

This chapter depicts an architecture that aims at designing a multi-UAV framework enabling cooperative operations in a system in which some UAVs are directly controlled by an operator, others are only endowed with operational autonomy, and others have decisional autonomy capacities. The architecture provides with the possibility to configure dynamically the decisional scheme, depending on the available robots and on the operational context.

A taxonomy of robots decisional autonomy is introduced, and used as a foundation to state the proposed architecture. The various functionalities on-board each robot are organized among a repartition that exhibits on-board functional components, and on-board or on-ground generic executive and decision making processes.

A set of algorithms that fulfill the three main decision-making functionalities required in a multi-robot system are then presented: a contract-net protocol that can handle task allocation for complex multi-UAV missions, a planning scheme based on a Hierarchical Task Networks planner completed with plan-refiners that consider the actual domain models, and an executive system that handles the coordination and task execution issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Final demonstration of the COMETS project. http://www.laas.fr/~simon/eden/gallery/videos.php

  2. Alami, R., et al.: An architecture for autonomy. International Journal of Robotics Research 17, 315–337 (1998)

    Article  Google Scholar 

  3. Alami, R., Ingrand, F., Qutub, S.: A scheme for coordinating multi-robot planning activities and plans execution. In: Proceedings of the European Conference on Artificial Intelligence (1998)

    Google Scholar 

  4. Arkin, R.: Motor schema-base mobile robot navigation. International Journal of Robotics Research (1990)

    Google Scholar 

  5. Asama, H., Ozaki, K.: Negotiation between multiple mobile robots and an environment manager. In: Proceedings of IEEE Int. Conf. on Robotics and Automation, Pisa, Italy, pp. 533–538. IEEE, Los Alamitos (1991)

    Google Scholar 

  6. Balch, T., Arkin, R.: Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation 14(6), 926–939 (1998)

    Article  Google Scholar 

  7. Bellingham, J., et al.: Multi-task allocation and path planning for cooperating UAVs. In: Proceedings of the Conference on Cooperative Control and Optimization (2001)

    Google Scholar 

  8. Brooks, R.: A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2(1), 14–23 (1986)

    Google Scholar 

  9. Brumitt, B.L., Stentz, A.: GRAMMPS: A generalized mission planner for multiple mobile robots in unstructured environments. In: Proceedings of the IEEE International Conference on Robotics and Automation, May 1998, pp. 1564–1571. IEEE Computer Society, Piscataway (1998)

    Google Scholar 

  10. Buzogany, L., Pachter, M., D’Azzo, J.: Automated control of aircraft in formation flight. In: Proceedings of the AIAA Guidance, Navigation and Control Conference, Monterey, USA, pp. 1349–1370 (1993)

    Google Scholar 

  11. Chien, S., et al.: A comparison of coordinated planning methods for cooperating rovers. In: Sierra, C., Gini, M., Rosenschein, J.S. (eds.) Proceedings of the Fourth International Conference on Autonomous Agents, Barcelona, Spain, pp. 100–101, poster announcement. ACM Press, New York (2000)

    Chapter  Google Scholar 

  12. Dias, M.B., Goldberg, D., Stentz, A.T.: Market-based multirobot coordination for complex space applications. In: Proceedings of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space (May 2003)

    Google Scholar 

  13. Dias, M.B., Stentz, A.T.: A free market architecture for distributed control of a multirobot system. In: Proceedings of the 6th International Conference on Intelligent Autonomous Systems, July, pp. 115–122 (2000)

    Google Scholar 

  14. Dias, M.B., Stentz, A.T.: A market approach to multirobot coordination. Technical Report CMU-RI-TR-01-26, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA (August 2001)

    Google Scholar 

  15. Dias, M.B., Stentz, A.T.: Enhanced negotiation and opportunistic optimization for market-based multirobot coordination. Technical Report CMU-RI-TR-02-18, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA (August 2002)

    Google Scholar 

  16. Dias, M.B., Stentz, A.T.: Traderbots: A market-based approach for resource, role, and task allocation in multirobot coordination. Technical Report CMU-RI-TR-03-19, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA (August 2003)

    Google Scholar 

  17. Doherty, P., et al.: The WITAS unmanned aerial vehicle project. In: Proceedings of the 14th European Conference on Artificial Intelligence, Berlin, Germany, pp. 747–755 (2000)

    Google Scholar 

  18. Ollero, A., et al.: Control of multiple heterogeneous unmanned aerial vehicles: Architecture and perception issues in the COMETS project. IEEE robotics and automation magazine 12(2), 46–57 (2004)

    Article  Google Scholar 

  19. Gat, E.: Integrating planning and reacting in a heterogeneous asynchronous architecture for mobile robots. SIGART Bulletin 2, 17–74 (1991)

    Article  Google Scholar 

  20. Gerkey, B.P., Matarić, M.J.: Sold!: Auction methods for multirobot coordination. IEEE Transaction on Robotics and Automation 18, 758–768 (2002)

    Article  Google Scholar 

  21. Giulietti, F., Pollini, L., Innocenti, M.: Autonomous formation flight. Control Systems Magazine 20(6), 34–44 (2000)

    Article  Google Scholar 

  22. Kalra, N., Stentz, A.: A market approach to tightly-coupled multi-robot coordination: First results. In: Proceedings of the ARL Collaborative Technologies Alliance Symposium (May 2003)

    Google Scholar 

  23. King, E., et al.: Coordination and control experiments on a multi-vehicle testbed. In: Proceedings of the IEEE American Control Conference, Boston, Ma, USA, IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  24. Lian, F.-L., Richard, M.: Real-time trajectory generation for the cooperative path planning of multi-vehicle systems. In: Proceedings of the 41st IEEE Conference on Decision and Control, IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  25. Matarić, M.J., Sukhatme, G.: Task-allocation and coordination of multiple robots for planetary exploration. In: Proceedings of the 10th International Conference on Advanced Robotics, August 2001, pp. 61–70 (2001)

    Google Scholar 

  26. Matarić, M.J., Sukhatme, G.S., Ostergaard, E.: Multi-robot task allocation in uncertain environments. Autonomous Robots (2003)

    Google Scholar 

  27. Maza, I., Ollero, A.: Multiple UAV cooperative searching operation using polygon area decomposition and efficient coverage algorithms. In: Proceedings of the 7th International Symposium on Distributed Autonomous Robotic Systems, Toulouse, France (2004)

    Google Scholar 

  28. Nau, D., et al.: SHOP2: an HTN planning system. Artificial Intelligence Research 20, 379–404 (2003)

    MATH  Google Scholar 

  29. Parker, L.: ALLIANCE: An architecture for fault-tolerant multi-robot cooperation. IEEE Transactions on Robotics and Automation 14(2), 220–240 (1998)

    Article  Google Scholar 

  30. Raffard, R.L., Tomlin, C., Boyd, S.P.: Distributed optimization for cooperative agents: application to formation flight. In: Proceedings of the 43rd IEEE Conference on Decision and Control, Nassau, Bahamas, IEEE, Los Alamitos (2004)

    Google Scholar 

  31. Sandholm, T.: An implementation of the contract net protocol based on marginal cost calculations. In: Proceedings of the 11th National Conference on Artificial Intelligence, July 1993, pp. 256–263. AAAI Press, Menlo Park (1993)

    Google Scholar 

  32. Schumacher, C., Singh, S.N.: Nonlinear control of multiple UAV in close-coupled formation flight. In: Proceedings of the AIAA Guidance, Navigation and Control Conference, Denver, Co, USA (2000)

    Google Scholar 

  33. Simmons, R., et al.: A layered architecture for coordination of mobile robots. In: Multi-robot systems: From swarms to intelligent automata, Proceedings of the 2002 NRL Workshop on Multi-Robot Systems, Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  34. Smith, R.G.: The contract net protocol: High-level communication and control in a distributed problem solver. IEEE Transaction on Computers 29(12), 1104–1113 (1980)

    Article  Google Scholar 

  35. Sousa, J., Simsek, T., Varaiya, P.: Task planning and execution for UAV teams. In: Proceedings of the 43rd IEEE Conference on Decision and Control, Nassau, Bahamas, IEEE, Los Alamitos (2004)

    Google Scholar 

  36. Stentz, A.T., Dias, M.B.: A free market architecture for coordinating multiple robots. Technical Report CMU-RI-TR-99-42, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA (December 1999)

    Google Scholar 

  37. Sukkarieh, S., et al.: Cooperative data fusion and control amongst multiple unihabited air vehicles. In: Proceedings of the 8th International Symposium on Experimental Robotics, Sant’Angelo d’Ischia, Italy (2002)

    Google Scholar 

  38. Sukkarieh, S., et al.: The ANSER project: Multi-UAV data fusion. International Journal on Robotics Research 22(7–8), 505–540 (2002)

    Google Scholar 

  39. Vidal, R., et al.: The Berkeley aerial robot project. In: Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Workshop on Aerial Robotics, Lausanne, Switzerland, IEEE, Los Alamitos (2002)

    Google Scholar 

  40. Volpe, R., et al.: The CLARAty architecture for robotic autonomy. In: Proceedings of the 2001 IEEE Aerospace Conference, Big Sky, Mt, USA, IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  41. Zelinski, S., Koo, T.J., Sastry, S.: Hybrid system design for formations of autonomous vehicles. In: Proceedings of the 42nd IEEE Conference on Decision and Control, IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  42. Zlot, R.M., et al.: Multi-robot exploration controlled by a market economy. In: Proceedings of the IEEE International Conference on Robotics and Automation, May 2002, IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aníbal Ollero Iván Maza

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lacroix, S., Alami, R., Lemaire, T., Hattenberger, G., Gancet, J. (2007). Decision Making in Multi-UAVs Systems: Architecture and Algorithms. In: Ollero, A., Maza, I. (eds) Multiple Heterogeneous Unmanned Aerial Vehicles. Springer Tracts in Advanced Robotics, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73958-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73958-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73957-9

  • Online ISBN: 978-3-540-73958-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics