Skip to main content

Telerobotic Control by Virtual Fixtures for Surgical Applications

  • Chapter
Advances in Telerobotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 31))

Summary

We present a new method to generate spatial motion constraints for surgical robots that provide sophisticated ways to assist the surgeon. Surgical robotic assistant systems are human-machine collaborative systems (HMCS) that work interactively with surgeons by augmenting their ability to manipulate surgical instruments in carrying out a variety of surgical tasks. The goal of “virtual fixtures” (VF) is to provide anisotropic motion behavior to the surgeon’s motion command and to filter out tremor to enhance precision and stability. Our method uses a weighted, linearized, multi-objective optimization framework to formalize a library of virtual fixtures for task primitives. We set the objective function based on user input that can be obtained through a force sensor, joystick or a master robot. We set the linearized subject function based on five basic geometric constraints. The strength of this approach is that it is extensible to include additional constraints such as collision avoidance, anatomy-based constraints and joint limits, by using an instantaneous kinematic relationship between the task variables and robot joints. We illustrate our approach using three surgical tasks: percutaneous needle insertion, femur cutting for prosthetic implant and suturing. For the percutaneous procedures we provide a remote center of motion (RCM) point that provides an isocentric motion that is fundamental to these types of procedures. For femur cutting procedures we provide assistance by maintaining proper tool orientation and position. For the suturing task we address the problem of stitching in endoscopic surgery using a circular needle. We show that with help of VF, suturing can be performed at awkward angles without multiple trials, thus avoiding damage to tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Berkelman, P. Cinquin, J. Troccaz, J. Ayoubi, C. Letoublon, and F. Bouchard. A compact, compliant laparoscopic endoscope manipulator. In Proc. IEEE Int. Conf. Robotics and Automation, pages 1870–1875, 2002.

    Google Scholar 

  2. J. Rosen, J. D. Brown, L. Chang, M. Barreca, M. Sinanan, and B. Hannaford. The bluedragon-a system for measuring the kinematics, the dyanmics of minimally invasive surgical tools in-vivo. In Proc. IEEE Int. Conf. Robotics and Automation, pages 1876–1881, 2002.

    Google Scholar 

  3. G. S. Guthart and J. K. Salisbury. The intuitive telesurgery system: Overview, application. In Proc. IEEE Int. Conf. Robotics and Automation, pages 618–621, 2000.

    Google Scholar 

  4. M. Chodoussi, S. E. Butner, and Y. Wang. Robotic surgery-the transatlantic case. In Proc. IEEE Int. Conf. Robotics and Automation, pages 1882–1888, 2002.

    Google Scholar 

  5. M. C. Cavusoglu, W. Williams, F. Tendick, and S. S. Sastry. Robotics for telesurgery: second generation berkeley/ucsf laparoscopic telesurgical workstation, looking toward the future applications. Industrial Robot, Special Issue on Medical Robotics, 30(1):22–29, 2003.

    Google Scholar 

  6. P. S. Schenker, H. Das, and R. T. Ohm. Development of a new high-dexterity manipulator for robot-assisted microsurgery. In Proc. SPIE-The International Society for Optical Engineering: Telemanipulator and Telepresence Technologies, 2351:191–198, 1995.

    Google Scholar 

  7. P. S. Jensen, K. W. Grace, R. Attariwala, J. E. Colgate, and M. R. Glucksberg. Toward robot-assisted vascular microsurgery in the retina. Graefes Archive for Clinical and Experimental Ophthalmology, 235(11):696–701, 1997.

    Article  Google Scholar 

  8. M. Mitsuishi, Y. Iizuka, H. Watanabe, H. Hashizume, and K. Fujiwara. Remote operation of a micro-surgical system. In Proc. IEEE Int. Conf. Robotics and Automation, pages 1013–1019, 1998.

    Google Scholar 

  9. R. H. Taylor, H. A. Paul, P. Kazanzides, B. D. Mittelstadt, W. Hanson, J. F. Zuhars, B. L. Musits B. Williamson, E. Glassman, and W. L. Bargar. An image-directed robotic system for precise orthopaedic surgery. IEEE Transactions on Robotics and Automation, 10(3):261–275, 1994.

    Article  Google Scholar 

  10. J. Wurm, H. Steinhart, K. Bumm, M. Vogele, C. Nimsky, and H. Iro. A novel robot system for fully automated paranasal sinus surgery. In International Congress Series, 1256:633–638, 2003.

    Article  Google Scholar 

  11. I. W. Hunter, T. D. Doukoglou, S. R. Lafontaine, P. G. Charette, L. A. Jones, M. A. Sagar, G. D. Mallinson, and P. J. Hunter. A teleoperated microsurgical robot, associated virtual environment for eye surgery. Presence, 2(4):265–280, 1993.

    Google Scholar 

  12. M. Mitsuishi, T. Watanabe, H. Nakanishi, T. Hori, H. Watanabe, and B. Kramer. A tele-micro-surgery system with co-located view, operation points, a rotational-force-feedback-free master manipulator. In 2nd Int. Symp. Medical Robotcis and Computer-Assisted Surgery (MRCAS), pages 111–118, 1995.

    Google Scholar 

  13. M. Mitsuishi, H. Watanabe, H. Nakanishi, H. Kubota, and Y. Iizuka. Dexterity enhancement for a tele-micro-surgery system with multiple macro-micro co-located operation point manipulators, understanding of the operator’s intention. In 3rd Int. Symp. Medical Robotcis and Computer-Assisted Surgery (MRCAS), pages 821–830, 1997.

    Google Scholar 

  14. S. E. Salcudean and G. Bell S. Ku. Performance measurement in scaled teleoperation for microsurgery. In 1st Int. Symp. Medical Robotics and Computer-Assisted Surgery (MRCAS), pages 789–798, 1997.

    Google Scholar 

  15. B. L. Davies, S. J. Harris, W. J. Lin, R. D. Hibberd, R. Middleton, and J. C. Cobb. Active compliance in robotic surgery-the use of force control as a dynamic constraint. In Proc. Inst. Mech. Eng. H, 211(4):285–292, 1997.

    Article  Google Scholar 

  16. S. Park, R. D. Howe, and D. F. Torchiana. Virtual fixtures for robotic cardiac surgery. In Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), pages 1419–1420, 2001.

    Google Scholar 

  17. A. Bettini, P. Marayong, S. Lang, A. M. Okamura, and G. D. Hager. Vision assisted control for manipulation using virtual fixtures. In IEEE Transactions on Robotics, 20(6):953–966, 2004.

    Article  Google Scholar 

  18. R. Kumar, G. D. Hager, A. Barnes, P. Jensen, and R. H. Taylor. An augmentation system for fine manipulation. In Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), pages 956–965, 2000.

    Google Scholar 

  19. P. Marayong, M. Li, A. M. Allison, and G. D. Hager. Spatial motion constraints: theory, demonstrations for robot guidance using virtual fixtures. In Proc. IEEE Int. Conf. Robotics and Automation, pages 1954–1959, 2003.

    Google Scholar 

  20. D. Aarno, S. Ekvall, and D. Kragic. iadaptive virtual fixtures for machine-assisted teleoperation tasks. In Proc. IEEE Int. Conf. Robotics and Automation, pages 1151–1156, 2005.

    Google Scholar 

  21. J. Funda, R. H. Taylor, B. Eldridge, S. Gomory, and K. G. Gruben. Constrained cartesian motion control for teleoperated surgical robots. IEEE Transactions on Robotics and Automation, 12(3):453–465, 1996.

    Article  Google Scholar 

  22. M. Li, A. Kapoor, and R. H. Taylor. A constrained optimization approach to virtual fixtures. In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pages 2924–2929, 2005.

    Google Scholar 

  23. R. H. Taylor, J. Funda, B. Eldridge, K. Gruben, D. LaRose, S. Gomory, M. Talamini, L. R. Kavoussi, and J. Anderson. A telerobotic assistant for laparoscopic surgery. IEEE Eng. Med. Biol. Mag., 14:279–287, 1995.

    Article  Google Scholar 

  24. R. H. Taylor, P. Jensen, L. L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi. A steady-hand robotic system for microsurgical augmentation. International Journal of Robotics Research, 18(12):1201–1210, 1999.

    Article  Google Scholar 

  25. M. Cavasoglu, F. Tendick, M. Cohn, and S. Sastry. A laparoscopic telesurgical workstation. IEEE Transactions on Robotics and Automation, 15(4):728–739, 1999.

    Article  Google Scholar 

  26. C. Lawson and R. Hanson. Solving Least Squares Problems. Prentice-Hall, 1974.

    Google Scholar 

  27. A. Kapoor, M. Li, and R. H. Taylor. Spatial motion constraints for robot assisted suturing using virtual fixtures. In Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), pages 89–96, 2005.

    Google Scholar 

  28. U. Wiesel and M. Boerner. First experiences using a surgical robot for total knee replacement. In Proc. Computer Assisted Orthopaedic Surgery (CAOS Intl), pages 143–146, 2001.

    Google Scholar 

  29. S. J. Harris, K. L. Fan, R. D. Hibberd, and B. L. Davies. Experiences with robotic systems for knee surgery. In Proc. 3rd Int. Conf. Medical Robotics and Computer Assisted Surgery, pages 757–766, 1997.

    Google Scholar 

  30. S. Mai and W. Siebert. Planning and technique using the robot system ‘caspar’ for tkr. In Proc. Computer Assisted Orthopaedic Surgery (CAOS Intl), pages 278–288, 2001.

    Google Scholar 

  31. A. Kapoor, N. Simaan, and R. H. Taylor. Suturing in confined spaces: constrained motion control of a hybrid 8-dof robot. In Proc. IEEE Int. Conf. Advanced Robotics, pages 452–459, 2005.

    Google Scholar 

  32. M. Li and R. H. Taylor. Optimum robot control for 3d virtual fixture in constrained ent surgery. In Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), pages 165–172, 2003.

    Google Scholar 

  33. M. Li and R. H. Taylor. Spatial motion constraints in medical robot using virtual fixtures generated by anatomy. In Proc. IEEE Int. Conf. Robotics and Automation, pages 1270–1275, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, M., Kapoor, A., Taylor, R.H. (2007). Telerobotic Control by Virtual Fixtures for Surgical Applications. In: Ferre, M., Buss, M., Aracil, R., Melchiorri, C., Balaguer, C. (eds) Advances in Telerobotics. Springer Tracts in Advanced Robotics, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71364-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71364-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71363-0

  • Online ISBN: 978-3-540-71364-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics