Skip to main content

Improved Bounds for Wireless Localization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5124))

Abstract

We consider a novel class of art gallery problems inspired by wireless localization. Given a simple polygon P, place and orient guards each of which broadcasts a unique key within a fixed angular range. Broadcasts are not blocked by the edges of P. The interior of the polygon must be described by a monotone Boolean formula composed from the keys. We improve both upper and lower bounds for the general setting by showing that the maximum number of guards to describe any simple polygon on n vertices is between roughly \({\frac{3}{5}}\)n and \(\frac{4}{5}\)n. For the natural setting where guards may be placed aligned to one edge or two consecutive edges of P only, we prove that n − 2 guards are always sufficient and sometimes necessary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, M., Ziegler, G.M.: Proofs from THE BOOK, 3rd edn. Springer, Berlin (2003)

    Google Scholar 

  2. Chvátal, V.: A Combinatorial Theorem in Plane Geometry. J. Combin. Theory Ser. B 18, 39–41 (1975)

    Article  MATH  Google Scholar 

  3. Damian, M., Flatland, R., O’Rourke, J., Ramaswami, S.: A New Lower Bound on Guard Placement for Wireless Localization. In: 17th Annual Fall Workshop on Computational Geometry (2007)

    Google Scholar 

  4. Dobkin, D.P., Guibas, L., Hershberger, J., Snoeyink, J.: An Efficient Algorithm for Finding the CSG Representation of a Simple Polygon. Algorithmica 10, 1–23 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eppstein, D., Goodrich, M.T., Sitchinava, N.: Guard Placement for Efficient Point-in-Polygon Proofs. In: Proc. 23rd Annu. Sympos. Comput. Geom. pp. 27–36 (2007)

    Google Scholar 

  6. Fisk, S.: A Short Proof of Chvátal’s Watchman Theorem. J. Combin. Theory Ser. B 24, 374 (1978)

    Article  MathSciNet  Google Scholar 

  7. Fragoudakis, C., Markou, E., Zachos, S.: Maximizing the Guarded Boundary of an Art Gallery is APX-complete. Comput. Geom. Theory Appl. 38(3), 170–180 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Kahn, J., Klawe, M.M., Kleitman, D.J.: Traditional Galleries Require Fewer Watchmen. SIAM J. Algebraic Discrete Methods 4, 194–206 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karavelas, M.I., Tsigaridas, E.P.: Guarding Curvilinear Art Galleries with Vertex or Point Guards. Rapport de recherche 6132, INRIA (2007)

    Google Scholar 

  10. Lee, D.T., Lin, A.K.: Computational Complexity of Art Gallery Problems. IEEE Trans. Inform. Theory 32(2), 276–282 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. O’Rourke, J.: Galleries Need Fewer Mobile Guards: A Variation on Chvátal’s Theorem. Geom. Dedicata 14, 273–283 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. O’Rourke, J.: Visibility. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, ch. 28, pp. 643–663. CRC Press LLC, Boca Raton (2004)

    Google Scholar 

  13. O’Rourke, J.: Computational Geometry Column 48. ACM SIGACT News 37(3), 55–57 (2006)

    Article  Google Scholar 

  14. Shermer, T.C.: Recent Results in Art Galleries. Proc. IEEE 80(9), 1384–1399 (1992)

    Article  Google Scholar 

  15. Speckmann, B., Tóth, C.D.: Allocating Vertex Pi-guards in Simple Polygons via Pseudo-triangulations. Discrete Comput. Geom. 33(2), 345–364 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Urrutia, J.: Art Gallery and Illumination Problems. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 973–1027. Elsevier Science Publishers B.V, Amsterdam (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joachim Gudmundsson

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Christ, T., Hoffmann, M., Okamoto, Y., Uno, T. (2008). Improved Bounds for Wireless Localization. In: Gudmundsson, J. (eds) Algorithm Theory – SWAT 2008. SWAT 2008. Lecture Notes in Computer Science, vol 5124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69903-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69903-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69900-2

  • Online ISBN: 978-3-540-69903-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics