Skip to main content

A-priori Analysis of the LMSE Micromixing Model for Filtered-Density Function Simulation in High Schmidt Number Flows

  • Conference paper
High Performance Computing in Science and Engineering, Garching/Munich 2007

Abstract

An attractive method for dealing with turbulent reacting flows are Filtered-Density Function simulations (FDF) (Colucci et al., Phys. Fluids 12(2): 499–515, 1998; Raman et al., Combust. Flame 143:56–78, 2005), where the transport equations of the FDF are directly solved via a Monte-Carlo Method (Heinz, Statistical Mechanics of Turbulent Flows, 2003; Pope, Turbulent Flows, 2000) in conjunction with a Large-Eddy-Simulation (LES) of the flow field. The great advantage of these methods is that the chemical source term is closed, the difficulties lie in the modeling of the unclosed conditional diffusion term. In this work we adopt the FDF method to treat high Schmidt (Sc) number flows in combination with a Direct Numerical Simulation (DNS) of the flow field. Due to the high Sc number, the micromixing takes place on scales beyond the Kolmogorov scale η K and these scales are therefore described and modeled with the FDF method. In this paper we conduct an a-priori analysis of a standard micromixing model for the conditional diffusion term in the framework of fully resolved flow field (DNS) and an unresolved scalar field at high Sc number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.K. Batchelor, Fluid Dynamics (Cambridge University Press, Cambridge, 1967)

    MATH  Google Scholar 

  2. G.K. Batchelor, Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1: General discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  3. P.J. Colucci, F.A. Jaberi, P. Givi, S.B. Pope, Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10(2), 499–515 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. R.O. Fox, Computational Models for Turbulent Reacting Flows (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  5. C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences (Springer, Heidelberg, 1990)

    MATH  Google Scholar 

  6. S. Heinz, Statistical Mechanics of Turbulent Flows (Heidelberg University Press, Heidelberg, 2003)

    Google Scholar 

  7. H. Kawamura, K. Ohsaka, H. Abe, K. Yamamoto, DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid. Int. J. Heat Fluid Flow 19, 482–491 (1998)

    Article  Google Scholar 

  8. J. Kim, P. Moin, R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  9. S.K. Lele, Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Manhart, A zonal grid algorithm for DNS of turbulent boundary layers. Comput. Fluids 33(3), 435–461 (2004)

    Article  MATH  Google Scholar 

  11. M. Manhart, R. Friedrich, DNS of a turbulent boundary layer with separation. Int. J. Heat Fluid Flow 23(5), 572–581 (2002)

    Article  Google Scholar 

  12. S. Mitarai, J.J. Riley, G. Kosaly, Testing of mixing models for Monte Carlo probability density function simulations. Phys. Fluids 17(4) (2005)

    Google Scholar 

  13. Y. Na, T.J. Hanratty, Limiting behavior of turbulent scalar transport close to a wall. Int. J. Heat Mass Transf. 43, 1749–1758 (2000)

    Article  MATH  Google Scholar 

  14. E.E. O’Brian, The Probability Density Function (PDF) Approach to Reacting Turbulent Flows (Springer, Heidelberg, 1980), pp. 185–218

    Google Scholar 

  15. S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  16. S.B. Pope, Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 23–63 (1994)

    Article  MathSciNet  Google Scholar 

  17. V. Raman, H. Pitsch, R.O. Fox, Hybrid large-eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion. Combust. Flame 143, 56–78 (2005)

    Article  Google Scholar 

  18. F. Schwertfirm, M. Manhart, ADM modeling for semi-direct numerical simulation of turbulent mixing and mass transport, in Turbulence and Shear Flow Phenomena, ed. by J. Humphrey, T. Gatski, J. Eaton, R. Friedrich, N. Kasagi, M. Leschziner (Williamsburg, USA, 2005), pp. 823–828

    Google Scholar 

  19. F. Schwertfirm, J. Mathew, M. Manhart, Improving spatial resolution characteristics of finite difference and finite volume schemes by approximate deconvolution pre-processing. Comput. Fluids (2007, accepted)

    Google Scholar 

  20. F. Schwertfirm, M. Manhart, DNS of passive scalar transport in turbulent channel flow at high Schmidt numbers. Int. J. Heat Mass Transf. (2007). doi:10.1016/j.ijheatfluidflow.2007.05.012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Schwertfirm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwertfirm, F., Manhart, M. (2009). A-priori Analysis of the LMSE Micromixing Model for Filtered-Density Function Simulation in High Schmidt Number Flows. In: Wagner, S., Steinmetz, M., Bode, A., Brehm, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69182-2_24

Download citation

Publish with us

Policies and ethics