Skip to main content

Multi Dimensional Quantum Dynamics of Chemical Reaction Processes

  • Conference paper
  • 1425 Accesses

Abstract

Accurate quantum determination of the ground state tunneling splitting zero-point energy using the full dimensional potential proposed by Yagi et al. [J. Chem. Phys. 115:10647, 2001] are reported. Two exact quantum dynamics methods are used: the multi-configurational time-dependent Hartree (MCTDH) approach and the diffusion Monte Carlo based projection operator imaginary time spectral evolution (POITSE) method. In this report, we focus on the challenges faced by the MCTDH approach and the steps taken for obtaining the benchmark value. The MCTDH computation yields 25 cm−1 converged to about 10% accuracy while POITSE obtains a value for the tunneling splitting of 25.7±0.3 cm−1 which compares well with the experimental value of 21.6 cm−1. These rigorous results are used to evaluate the accuracy of approximate dynamical approaches, e.g. the instanton theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Bountis (ed.), Proton Transfer in Hydrogen-Bonded Systems (Plenum, New York, 1992)

    Google Scholar 

  2. S. Hammes-Schiffer, Acc. Chem. Res. 39(2), 93 (2006)

    Article  Google Scholar 

  3. S.L. Baughcum, R.W. Duerst, W.F. Rowe, Z. Smith, E.B. Wilson, J. Am. Chem. Soc. 103, 6296 (1981)

    Article  Google Scholar 

  4. P. Turner, S.L. Baughcum, S.L. Coy, Z. Smith, J. Am. Chem. Soc. 106, 2265 (1984)

    Article  Google Scholar 

  5. S.L. Baughcum, Z. Smith, E.B. Wilson, R.W. Duerst, J. Am. Chem. Soc. 106, 2260 (1984)

    Article  Google Scholar 

  6. D. Firth, K. Beyer, M. Dvorak, S. Reeve, A. Grushow, K. Leopold, J. Chem. Phys. 94, 1812 (1991)

    Article  Google Scholar 

  7. T. Carrington, W.H. Miller, J. Chem. Phys. 81, 3942 (1984)

    Article  Google Scholar 

  8. T. Carrington, W.H. Miller, J. Chem. Phys. 84, 4364 (1986)

    Article  Google Scholar 

  9. N. Shida, P.F. Barbara, J.E. Almlöf, J. Chem. Phys. 91, 4061 (1989)

    Article  Google Scholar 

  10. D. Babić, S.D. Bosanac, N. Dos̆lić, Chem. Phys. Lett. 358, 337 (2002)

    Article  Google Scholar 

  11. T.D. Sewell, D.L. Thompson, Chem. Phys. Lett. 193, 347 (1992)

    Article  Google Scholar 

  12. Y. Guo, T.D. Sewell, D.L. Thompson, Chem. Phys. Lett. 224, 470 (1994)

    Article  Google Scholar 

  13. M. Ben-Nun, T.J. Martínez, J. Phys. Chem. A 103, 6055 (1999)

    Article  Google Scholar 

  14. Z. Smedarchina, W. Siebrand, M.Z. Zgierski, J. Chem. Phys. 103, 5326 (1995)

    Article  Google Scholar 

  15. V.A. Benderskii, E.V. Vetoshkin, I.S. Irgibaeva, H.P. Trommsdorff, Chem. Phys. 262, 393 (2000)

    Article  Google Scholar 

  16. K. Yagi, T. Taketsugu, K. Hirao, J. Chem. Phys. 115, 10647 (2001)

    Article  Google Scholar 

  17. G.V. Mil’nikov, K. Yagi, T. Taketsugu, H. Nakamura, K. Hirao, J. Chem. Phys. 119, 10 (2003)

    Article  Google Scholar 

  18. G.V. Mil’nikov, K. Yagi, T. Taketsugu, H. Nakamura, K. Hirao, J. Chem. Phys. 120, 5036 (2004)

    Article  Google Scholar 

  19. D.P. Tew, N.C. Handy, S. Carter, S. Irle, J. Bowman, Mol. Phys. 101(23–24), 3513 (2003)

    Article  Google Scholar 

  20. D.P. Tew, N.C. Handy, S. Carter, Mol. Phys. 102(21–22), 2217 (2004)

    Article  Google Scholar 

  21. D.P. Tew, N.C. Handy, S. Carter, J. Chem. Phys. 125(8), 084313 (2006)

    Article  Google Scholar 

  22. T. Baba, T. Tanaka, I. Morino, K.M. Yamada, K. Tanaka, J. Chem. Phys. 110, 4131 (1999)

    Article  Google Scholar 

  23. U. Manthe, H. Meyer, L. Cederbaum, J. Chem. Phys. 97, 3199 (1992)

    Article  Google Scholar 

  24. M. Beck, A. Jackle, G. Worth, H. Meyer, Phys. Rep. 324, 1 (2000)

    Article  Google Scholar 

  25. M.D. Coutinho-Neto, A. Viel, U. Manthe, J. Chem. Phys. 121(19), 9207 (2004)

    Article  Google Scholar 

  26. A. Viel, M.D. Coutinho-Neto, U. Manthe, J. Chem. Phys. 126(2), 024308 (2007)

    Article  Google Scholar 

  27. U. Manthe, J. Chem. Phys. 105, 6989 (1996)

    Article  Google Scholar 

  28. M.D. Coutinho-Neto, A. Viel, U. Manthe, in High Performance Computing in Science and Engineering, Munich (Springer, Berlin, 2004), pp. 225–236

    Google Scholar 

  29. U. Manthe, F. Matzkies, Chem. Phys. Lett. 252, 71 (1996)

    Article  Google Scholar 

  30. M.H. Beck, H.D. Meyer, Z. Phys. D 42, 113 (1997)

    Article  Google Scholar 

  31. U. Manthe, Chem. Phys. 329(1–3), 168 (2006)

    Article  Google Scholar 

  32. D. Blume, M. Lewerenz, P. Niyaz, K.B. Whaley, Phys. Rev. E 55, 3664 (1997)

    Article  Google Scholar 

  33. P. Huang, A. Viel, K.B. Whaley, in Recent Advances in Quantum Monte Carlo Methods, Part II: Recent Advances in Computational Chemistry, vol. 2, ed. by W.A. Lester Jr. (World Scientific, Singapore, 2002), p. 111

    Google Scholar 

  34. S.L. Baughcum, Z. Smith, E.B. Wilson, R.W. Duerst, J. Am. Chem. Soc. 106, 2260 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurício D. Coutinho-Neto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coutinho-Neto, M.D., Viel, A., Manthe, U. (2009). Multi Dimensional Quantum Dynamics of Chemical Reaction Processes. In: Wagner, S., Steinmetz, M., Bode, A., Brehm, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69182-2_11

Download citation

Publish with us

Policies and ethics