Skip to main content

First-Principles Theories of Piezoelectric Materials

  • Chapter
Piezoelectricity

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 114))

Piezoelectrics have long been studied using parameterized models fit to experimental data, starting with the work of Devonshire in 1954 [1]. Much has been learned using such approaches, but they can also miss major phenomena if the materials properties are not well understood, as is exemplified by the realization that low-symmetry monoclinic phases are common around morphotropic phase boundaries, which was missed completed by low-order Devonshire models, and can only appear in higher-order models [2]. In the last 15 years, a new approach has developed using first-principles computations, based on fundamental physics, with no essential experimental input other than the desired chemistry (nuclear charges). First-principles theory laid the framework for a basic understanding of the origins of ferroelectric behavior [3–7] and piezoelectric properties [8–11]. The range of properties accessible to theory continues to expand as does the accuracy of the predictions. We are moving towards the ability to design materials of desired properties computationally. Here, we review some of the fundamental developments of our understanding of piezoelectric material behavior and the ability to predict a wide range of properties using theoretical methods. This is not meant as a review of the literature. Comprehensive reviews of the literature of theoretical studies of ferroelectrics are given by Resta [12] and Rabe and Ghosez [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.F. Devonshire, Philos. Mag. 3(10), 85 (1954)

    Google Scholar 

  2. D. Vanderbilt, M.H. Cohen, Phys. Rev. B 63, 94108 (2001)

    Article  ADS  Google Scholar 

  3. L.L. Boyer et al., Ferroelectrics 111, 1 (1990)

    Google Scholar 

  4. R.E. Cohen, H. Krakauer, Phys. Rev. B 42(10), 6416 (1990)

    Article  ADS  Google Scholar 

  5. R.E. Cohen, Nature 358, 136 (1992)

    Article  ADS  Google Scholar 

  6. R.E. Cohen, Nature 362, 213 (1993)

    Article  ADS  Google Scholar 

  7. K.M. Rabe, J.D. Joannopoulos, Phys. Rev. B 36(12), 6631 (1987)

    Article  ADS  Google Scholar 

  8. G. Saghi-Szabo, R.E. Cohen, H. Krakauer, Phys. Rev. Lett. 80(19), 4321 (1998)

    Article  ADS  Google Scholar 

  9. G. Saghi-Szabo, R.E. Cohen, H. Krakauer, Phys. Rev. B 59, 12771 (1999)

    Article  ADS  Google Scholar 

  10. Z. Wu et al., Phys. Rev. Lett. 94(6), 069901 (2005)

    Article  ADS  Google Scholar 

  11. Z. Wu, R.E. Cohen, Phys. Rev. Lett. 95, 037601 (2005)

    Article  ADS  Google Scholar 

  12. R. Resta, Model. Simul. Mater. Sci. Eng. 11(4), R69 (2003)

    Article  ADS  Google Scholar 

  13. K.M. Rabe, P. Ghosez, in Physics of Ferroelectrics: A Modern Perspective, ed. by C.H. Ahn, K.M. Rabe, J.M. Triscone (Springer, New York, 2006)

    Google Scholar 

  14. C. Fiolhais, F. Nogueira, M. Marques (eds.), A Primer in Density Functional Theory. Lecture Notes in Physics, vol. 620 (Springer, New York, 2003), p. 256

    MATH  Google Scholar 

  15. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965) 491

    Article  ADS  MathSciNet  Google Scholar 

  16. J.C. Slater, Phys. Rev. 78(6), 748 (1950)

    Article  MATH  ADS  Google Scholar 

  17. H. Fu, R.E. Cohen, Nature 403, 281 (2000)

    Article  ADS  Google Scholar 

  18. B.P. Burton, E. Cockayne, U.V. Waghmare, Phys. Rev. B 72(6), 064113 (2005)

    Article  ADS  Google Scholar 

  19. S. Tinte et al., Phys. Rev. Lett. 97(13), 137601 (2006)

    Article  ADS  Google Scholar 

  20. I.A. Kornev et al., Phys. Rev. Lett. 95(19), 196804 (2005)

    Article  ADS  Google Scholar 

  21. R.D. King-Smith, D. Vanderbilt, Phys. Rev. B 47(3), 1651 (1993)

    Article  ADS  Google Scholar 

  22. D. Vanderbilt, R.D. King-Smith, Phys. Rev. B 48(7), 4442 (1993)

    Article  ADS  Google Scholar 

  23. R. Resta, Rev. Mod. Phys. 66, 899 (1994)

    Article  ADS  Google Scholar 

  24. R. Resta, Phys. Rev. Lett. 96(13), 137601 (2006)

    Article  ADS  Google Scholar 

  25. R. Resta, J. Phys.: Condens. Matter 14(20), R625 (2002)

    Article  ADS  Google Scholar 

  26. I. Souza, J. Iniguez, D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002)

    Article  ADS  Google Scholar 

  27. I. Souza, J. Iniguez, D. Vanderbilt, Phys. Rev. B 69(8), 851061 (2004)

    Article  Google Scholar 

  28. C. Bungaro, K.M. Rabe, Phys. Rev. B 6522(22), 4106 (2002)

    Google Scholar 

  29. M.P. Warusawithana et al., Phys. Rev. Lett. 90, 036802 (2003)

    Article  ADS  Google Scholar 

  30. M. Dawber et al., Phys. Rev. Lett. 95(17), 1 (2005)

    Article  Google Scholar 

  31. S.M. Nakhmanson, K.M. Rabe, D. Vanderbilt, Phys. Rev. B 73(6), 1 (2006)

    Article  Google Scholar 

  32. Z. Wu, R.E. Cohen, Phys. Rev. B 73(23), 235116 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  33. X. Gonze, D.C. Allan, M.P. Teter, Phys. Rev. Lett. 68(24), 3603 (1992)

    Article  ADS  Google Scholar 

  34. X. Gonze, C. Lee, Phys. Rev. B 55(16), 10355 (1997)

    Article  ADS  Google Scholar 

  35. D.R. Hamann et al., Phys. Rev. B 71(3), 035117 (2005)

    Article  ADS  Google Scholar 

  36. P. Ghosez, J.P. Michenaud, X. Gonze, Phys. Rev. B 58(10), 6224 (1998)

    Article  ADS  Google Scholar 

  37. J.D. Axe, Phys. Rev. 157, 429 (1967)

    Article  ADS  Google Scholar 

  38. J.F. Scott, Phys. Rev. B 4(4), 1360 (1971)

    Article  ADS  Google Scholar 

  39. W. Zhong, D. Vanderbilt, K.M. Rabe, Phys. Rev. Lett. 73(13), 1861 (1994)

    Article  ADS  Google Scholar 

  40. K.M. Rabe, U.V. Waghmare, Phys. Rev. B 52, 13236 (1996)

    Article  ADS  Google Scholar 

  41. U.V. Waghmare, K.M. Rabe, Phys. Rev. B 55, 6161 (1997)

    Article  ADS  Google Scholar 

  42. I. Inbar, R.E. Cohen, Phys. Rev. B 53, 1193 (1994)

    Article  ADS  Google Scholar 

  43. Y. Luspin, J.L. Servoin, F. Gervais, J. Phys. C: Solid State Phys. 13, 3761 (1980)

    Article  ADS  Google Scholar 

  44. R. Comes, M. Lambert, A. Guinier, Solid State Commun. 6, 715 (1968)

    Article  ADS  Google Scholar 

  45. N. Sicron et al., Phys. Rev. B 50(18), 13168 (1994)

    Article  ADS  Google Scholar 

  46. G.A. Rossetti Jr., J.P. Cline, A. Navrotsky, J. Mater. Res. 13(11), 3197 (1998)

    Article  ADS  Google Scholar 

  47. P. Ghosez et al., Phys. Rev. B 60, 836 (1999)

    Article  ADS  Google Scholar 

  48. D.J. Singh, Phys. Rev. B 52, 12559 (1995)

    Article  ADS  Google Scholar 

  49. M. Fornari, D.J. Singh, Phys. Rev. B 63(9), 921011 (2001)

    Article  Google Scholar 

  50. M. Ghita et al., Phys. Rev. B 72(5) (2005)

    Google Scholar 

  51. M.D. Johannes, D.J. Singh, Phys. Rev. B 71(21), 1 (2005)

    Google Scholar 

  52. R. Resta, D. Vanderbilt, in Physics of Ferroelectrics: A Modern Perspective, ed. by C.H. Ahn, K.M. Rabe, J.M. Triscone (Springer, New York, 2007)

    Google Scholar 

  53. L. Boyer, H. Stokes, M. Mehl, Phys. Rev. Lett. 84(4), 709 (2000)

    Article  ADS  Google Scholar 

  54. N. Choudhury, R.E. Cohen, E.J. Walter, Comp. Mater. Sci. 37, 152 (2006)

    Article  Google Scholar 

  55. M. Posternak, R. Resta, A. Baldereschi, Phys. Rev. B 50, 8911 (1994)

    Article  ADS  Google Scholar 

  56. S.E. Park, T.R. Shrout, J. Appl. Phys. 82(4), 1804 (1997)

    Article  ADS  Google Scholar 

  57. R.E. Cohen, Nature 441, 941 (2006)

    Article  ADS  Google Scholar 

  58. M. Ahart et al., Nature 451, 545 (2008)

    Article  ADS  Google Scholar 

  59. D. La-Orauttapong et al., Phys. Rev. B 65(14), 4101 (2002)

    Article  Google Scholar 

  60. K. Ohwada et al., J. Phys. Soc. Jpn 70(9), 2778 (2001)

    Article  ADS  Google Scholar 

  61. B. Noheda et al., Phys. Rev. B 61(13), 8687 (2000)

    Article  ADS  Google Scholar 

  62. B. Noheda et al., Ferroelectrics 237(1–4), 541 (2000) 492

    Google Scholar 

  63. R. Guo et al., Phys. Rev. Lett. 84 (23), 5423 (2000)

    Article  ADS  Google Scholar 

  64. B. Noheda et al., Appl. Phys. Lett. 74(14), 2059 (1999)

    Article  ADS  Google Scholar 

  65. K. Ohwada et al., Phys. Rev. B 6709(9), 4111 (2003)

    Google Scholar 

  66. B. Noheda et al., Phys. Rev. B 6522(22), 4101 (2002)

    Google Scholar 

  67. B. Noheda et al., Phys. Rev. Lett. 86(17), 3891 (2001)

    Article  ADS  Google Scholar 

  68. G. Burns, F.H. Dacol, Phys. Rev. B 28(5), 2527 (1983)

    Article  ADS  Google Scholar 

  69. S. Wakimoto et al., Phys. Rev. B 65, 172105 (2002)

    Article  ADS  Google Scholar 

  70. P.K. Davies, M.A. Akbas, J. Phys. Chem. Solids 61(2), 159 (2000)

    Article  ADS  Google Scholar 

  71. T. Egami et al., Ferroelectrics 206–207(1–4; 1–2), 231 (1998)

    Article  Google Scholar 

  72. L. Farber et al., J. Am. Ceram. Soc. 85(9), 2319 (2002)

    Article  Google Scholar 

  73. L. Farber, P. Davies, J. Am. Ceram. Soc. 86(11), 1861 (2003)

    Article  Google Scholar 

  74. B.P. Burton, R.E. Cohen, Ferroelectrics 151, 331 (1994)

    Google Scholar 

  75. B.P. Burton, R.E. Cohen, Phys. Rev. B 52(2), 792 (1995)

    Article  ADS  Google Scholar 

  76. B.P. Burton, R.E. Cohen, Ferroelectrics 164, 201 (1995)

    Google Scholar 

  77. N. Choudhury et al., Phys. Rev. B 71(12), 125134 (2005)

    Article  ADS  Google Scholar 

  78. S.A. Prosandeev et al., Phys. Rev. B 70(13), 134110 (2004)

    Article  ADS  Google Scholar 

  79. M. Suewattana, D.J. Singh, Phys. Rev. B 73(22), 224105 (2006)

    Article  ADS  Google Scholar 

  80. M. Veithen, P. Ghosez, Phys. Rev. B 65(21), 214302 (2002)

    Article  ADS  Google Scholar 

  81. U.V. Waghmare et al., Phys. Rev. B 67(12), 125111 (2003)

    Article  ADS  Google Scholar 

  82. J.C. Slater, J. Chem. Phys. 9(1), 16 (1941)

    Article  ADS  MathSciNet  Google Scholar 

  83. R. Kind et al., Phys. Rev. Lett. 88(19), 195501 (2002)

    Article  ADS  Google Scholar 

  84. S. Koval et al., Phys. Rev. B 71(18), 1 (2005)

    Article  Google Scholar 

  85. N.A. Hill, Annu. Rev. Mater. Res. 32, 1 (2002)

    Article  Google Scholar 

  86. C. Ederer, N.A. Spaldin, Curr. Opin. Solid State Mater. Sci. 9(3), 128 (2005)

    Article  Google Scholar 

  87. B.B. Van Aken et al., Nat. Mater. 3(3), 164 (2004)

    Article  ADS  Google Scholar 

  88. C.J. Fennie, K.M. Rabe, Phys. Rev. B 72(10), 100103 (2005)

    Article  ADS  Google Scholar 

  89. J.B. Neaton et al., Phys. Rev. B 71(1), 014113 (2005)

    Article  ADS  Google Scholar 

  90. C. Ederer, N.A. Spaldin, Phys. Rev. B 71(6), 060401 (2005)

    Article  ADS  Google Scholar 

  91. P. Baettig, C. Ederer, N.A. Spaldin, Phys. Rev. B 72(21), 1 (2005)

    Article  Google Scholar 

  92. R. Haumont et al., Phys. Rev. B 73(13), 132101 (2006)

    Article  ADS  Google Scholar 

  93. D.J. Singh, Phys. Rev. B 73(9), 094102 (2006)

    Article  ADS  Google Scholar 

  94. C.J. Fennie, K.M. Rabe, Phys. Rev. Lett., 97(26), 267602 (2006)

    Article  ADS  Google Scholar 

  95. D.J. Singh et al., J. Phys. IV 128, 47 (2005)

    Article  Google Scholar 

  96. P. Baettig, N.A. Spaldin, Appl. Phys. Lett. 86(1), 012505 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cohen, R.E. (2008). First-Principles Theories of Piezoelectric Materials. In: Piezoelectricity. Springer Series in Materials Science, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68683-5_21

Download citation

Publish with us

Policies and ethics