Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 152))

  • 294 Accesses

Abstract

We briefly present some aspects of information processing in the mammalian visual system. The chapter focuses on the problem of scale-independent object recognition. We provide a simple model, based on spiking neurons that make use of shunting inhibition in order to optimally select their driving afferent inputs. The model is able to resist to some degree to scale changes of the stimulus. We discuss possible mechanisms that the brain could use to achieve invariant object recognition and correlate our model with biophysical evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biederman I (1987) Recognition by components: A theory of human image understanding. Psychol. Rev. 94: 115–147.

    Article  Google Scholar 

  2. Bush P. Sejnowski TJ (1996) Inhibition synchronizes sparsely connected cortical neurons within and between columns in realistic network models. J Comput Neurosci 3: 91–110.

    Article  Google Scholar 

  3. Chrobak JJ, Buzsaki G (1998) Gamma oscillations in the entorhinal cortex of the freely behaving rat. J Neurosci 18: 388–398.

    Google Scholar 

  4. Delorme A, Thorpe SJ (2001) Face identification using one spike per neuron: resistance to image degradations. Neural Networks 14: 795–803.

    Article  Google Scholar 

  5. Freeman WJ (1975) Mass Action in the Nervous System. Academic Press, NewYork.

    Google Scholar 

  6. Fukushima K (1980) Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36: 193–202.

    Article  MathSciNet  MATH  Google Scholar 

  7. Gray CM (1999) The Temporal Correlation Hypothesis of Visual Feature Integration: Still Alive and Well. Neuron 24: 31–47.

    Article  Google Scholar 

  8. Hubel D, Wiesel T (1965) Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J Neurophysiol 28: 229–289.

    Google Scholar 

  9. Li Z (1998) A neural model of contour integration in the primary visual cortex. Neural Comput 10 (4): 903–40.

    Article  Google Scholar 

  10. Li Z (1999) Visual segmentation by contextual influences via intra-cortical interactions in the primary visual cortex. Network: Comput Neural Syst 10: 187–212.

    Article  MATH  Google Scholar 

  11. Lytton WW, Sejnowski TJ (1991) Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. J Neurophysiol 66: 1059–1079.

    Google Scholar 

  12. Maass W, Legenstein RA, Markram H (2002) A new approach towards vision suggested by biologically realistic neural microcircuit models. In Buelthof 11H, Lee SW, Poggio TA, Wallraven C (eds) Biologically Motivated Computer Vision. Proc of the Second International Workshop BMCV 2002 Tübingen, Germany, vol. 2525 of Lecture Notes in Computer Science, Springer, Berlin, pp 282–293.

    Google Scholar 

  13. von der Malsburg C (1981) The correlation theory of brain function. MPI Biophysical Chemistry Internal Report 81–2.

    Google Scholar 

  14. von der Malsburg C (1985) Nervous structures with dynamical links Ber Bunsenges Phys Chem 89: 703–710.

    Google Scholar 

  15. von der Malsburg C (1986) Am I thinking assemblies? In: Palm G, Aertsen A (eds) Proceedings of the Trieste Meeting on Brain Theory. Springer, Berlin.

    Google Scholar 

  16. von der Malsburg C (1999) The What and Why of Binding: The Modeler’s Perspective. Neuron 24: 95–104.

    Article  Google Scholar 

  17. Milner P (1974) A model for visual shape recognition. Psychol Rev 81: 521–535.

    Article  Google Scholar 

  18. Muresan RC (2002) Complex Object Recognition Using a Biologically Plausible Neural Model. In: Mastorakis NE (eds) Advances in Simulation, Systems Theory and Systems Engineering. WSEAS Press, Athens, pp 163–168.

    Google Scholar 

  19. Muresan RC (2002) Visual Scale Independence in a Network of Spiking Neurons. ICONIP ‘02 Proceedings, Singapore, 4: 1739–1743.

    Google Scholar 

  20. Muresan RC (2003) RetinotopicNET: An Efficient Simulator for Retinotopic Visual Architectures. ESANN’03 Proceedings, Bruges, pp 247–254.

    Google Scholar 

  21. Muresan RC (2003) Pattern Recognition Using Pulse-Coupled Neural Networks and Discrete Fourier Transforms. Neurocomputing 51C: 487–493.

    Article  MathSciNet  Google Scholar 

  22. Muresan RC (2003) The Coherence Theory: Simple Attentional Modulation Effects. CNS’03 Proceeding, in press.

    Google Scholar 

  23. Olshausen BA, Anderson CH, van Essen DC (1993) A Neurobiological Model of Visual Attention and Invariant Pattern Recognition Based on Dynamic Routing of Information. J Neurosci 13 (11): 4700–4719.

    Google Scholar 

  24. Pasupathy Anitha, Connor CE (1999) Responses to Contour Features in Macaque Area V4. J Neurophysiol 82: 2490–2502.

    Google Scholar 

  25. Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2 (11): 1019–1025.

    Article  Google Scholar 

  26. Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr Opin Neurobiol 4: 569–579.

    Article  Google Scholar 

  27. Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18: 3870–3896.

    Google Scholar 

  28. Thorpe SJ, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381 (6582): 520–522.

    Article  Google Scholar 

  29. Thorpe SJ, Gaufrais J (1998) Rank order coding. In: Bower J (eds) Computational neuroscience: Trends in research. Plenum Press, New York, pp 113–118.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Muresan, R.C. (2004). Scale Independence in the Visual System. In: Rajapakse, J.C., Wang, L. (eds) Neural Information Processing: Research and Development. Studies in Fuzziness and Soft Computing, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39935-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39935-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53564-2

  • Online ISBN: 978-3-540-39935-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics