
jETI: A Tool for Remote Tool Integration

Tiziana Margaria1, Ralf Nagel2, and Bernhard Steffen2

1 Service Engineering for Distributed Systems,
Institute for Informatics, University of Göttingen, Germany

margaria@cs.uni-goettingen.de
2 Chair of Programming Systems, University of Dortmund, Germany

Ralf.Nagel@udo.edu, steffen@cs.uni-dortmund.de

Abstract. We present jETI, a redesign of the Electronic Tools Inte-
gration platform (ETI), that addresses the major issues and concerns
accumulated over seven years of experience with tool providers, tool
users and students. Most important was here the reduction of the ef-
fort for integrating and updating tools. jETI combines Eclipse with Web
Services functionality in order to provide (1) lightweight remote com-
ponent (tool) integration, (2) distributed component (tool) libraries, (3)
a graphical coordination environment, and (4) a distributed execution
environment. These features will be illustrated in the course of building
and executing remote heterogeneous tool sequences.

1 Motivation

The Electronic Tool Integration platform (ETI) [10] is an online platform specif-
ically designed to support the distributed use of and experimentation with tools
over the internet. Born in 1996 and online since early 1997, it offered a unique
service to tool providers and users: its solution for the remote execution of tools
and the internet-based administration of user-specific home areas on the ETI
server was well ahead of the technology of those times. Since then, users can

– retrieve information about the tools,
– execute tools in stand-alone mode, or
– combine functionalities of different tools to obtain sequential programs called

coordination sequences and run them in tool-coordination mode.

In particular, ETI is unique in allowing users to combine functionalities of tools
of different application domains to solve problems a single tool never would be
able to tackle.

Obviously, the richness of the tool repository plays a crucial role in the success
of ETI: the benefit gained from our experimentation and coordination facilities
grows with the amount and variety of integrated software-tools. The success
of the ETI concept is thus highly sensitive to the process and costs of tool
integration and tool maintenance.

In this paper we show how, taking advantage of newer technologies that
internally base on Web Services and Java technology, we can

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 557–562, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



558 T. Margaria, R. Nagel, and B. Steffen

1. considerably simplify the integration process, and at the same time
2. flexibilize the distribution, version management and use of integrated tools,
3. broaden the scope of potential user profiles and roles, by seamlessly integrat-

ing ETI’s coordination and synthesis features (cf. [8]) with a standard Java
development environment, and

4. solve the scalability problem connected with tool maintenance and evolution.

The background and a first attempt to the new distributed way of tool integra-
tion for ETI have been described in [3]. Our current version of ETI, jETI,

– exploits Web Services technology [14, 13, 11] to further simplify the remote
tool integration and execution,

– supports cross platform execution of the coordination models based on the
quasi standard set by Java, and it naturally

– flexibilizes the original coordination level by seamlessly integrating the Eclipse
development framework [2].

A more detailed description of jETI can be found in [4].
In the following, Section 2 sketches ETI’s philosophy of remote tool inte-

gration, before we describe ETI’s enhanced, formal methods-based coordination
facility in Section 3, and ETI’s framework view in Section 4. Our conclusions
and directions are given in Section 5.

2 jETI as an Integration Tool

jETI’s integration philosophy addresses the major obstacle for a wider adoption,
as identified during seven years of experience with tool providers, tool users and
students: the difficulty to provide the latest versions of the state-of-the-art tools.
The tool integration process required on dedicated ETI servers was too compli-
cated for both the tool providers and the ETI team, making it impossible to keep
pace with the development of new versions and a wealth of new tools. jETI’s
new remote integration philosophy overcomes this problems, because it replaces
the requirement of ‘physical’ tool integration by a very simple registration and
publishing. This allows the provision of tool functionalities in a matter of min-
utes: fast enough to be fully demonstrated during our presentation. Moreover,
whenever the portion of a tool’s API which is relevant for a new version of a
functionality remains unchanged, version updating is fully automatic!

Based on the Web Services functionality, the realization of this registration/pub-
lishing based integration philosophy required the implementation of four com-
ponents, as illustrated in Figure 1:

1. a HTML Tool Configurator, which allows tool providers to register a new
tool functionality just by filling our a simple template form,

2. the jABC Component Server, which (a) automatically generates appro-
priate Java classes from these specifications and (b) organizes all the regis-
tered tool functionalities, including the corresponding version control,



jETI: A Tool for Remote Tool Integration 559

Fig. 1. The jETI Tool Integration Workflow

3. the jETI client, which automatically loads the relevant Java classes from
the jABC Component Server and provides a flexible Java development envi-
ronment for coordinating the so obtained tool functionalities. Depending on
their goals and skill profile, users may just use our graphical coordination
editor (as in Sect. 3) to experiment with the tools, or they may use the full
development support of Eclipse to really embed remote functionalities into
normal Java programs. Of course, this choice heavily influences the size of
the required jETI-Client: only the first option is open to our envisaged ‘pure
HTML’ solution.

4. a Tool Executor, which is able to steer the execution of the specified tools
at the tool providers’ site.

This approach enables experts to develop complex tools in Java on the basis
of a library of remotely accessible tool functionalities, as well as newcomers to
use jETI’s formal methods-based, graphical coordination environment to safely
combine adequate tool functionalities into heterogeneous tools.



560 T. Margaria, R. Nagel, and B. Steffen

3 Formal Methods in jETI: The Coordination Feature

jETI’s philosophy of ‘pure Java’ totally eliminates the need for the proprietary
high-level coordination language (HL) of the original ETI [8], as well as the pro-
prietary format of the SIBs, ETI’s elementary building blocks. In jETI, SIBs are
now just classes that support a certain interface, which directly allows arbitrary
tool coordination via Java programming, possibly supported by Eclipse [2] or
other IDEs.

As Java programming-based coordination is only open to programming ex-
perts, jETI additionally provides a formal methods based, graphical coordination
environment. This environment allows non-experts to graphically compose ar-
bitrary tool functionalities under the control of a type checker, a model checker
and a model synthesis tool, as shown in Figure 2 top right. Coordination mod-
els passing this control are directly remotely executable on every (distributed)
platform providing a Java Virtual machine and a Tomcat Servlet Container.

However, not only the tool composition is under formal methods control. All
the tool functionalities are taxonomically characterized by means of ontologies,

Fig. 2. Architecture of the jABC Framework



jETI: A Tool for Remote Tool Integration 561

similar to the techniques adopted for the Semantic Web [1]. ETI supports a global
classification, but users may also introduce their private classification scheme,
which helps them to quickly identify the tools relevant for certain applications.
In fact, the requirement for this organizational support of tool functionalities
was a result of a common project with the CMU, aiming at introducing a larger
variety of formal verification tools in the undergraduate curricula.

4 jETI: The Architecture

jETI can be seen as a tool that enhances other tools and frameworks by the in-
tegration, organization and execution of remote functionalities. E.g., the setup
described above is based on jABC (cf. Figure 2), which is itself a framework
for enhancing Java development environments (like Eclipse) with a graphical
coordination level and dedicated control via formal methods. The charme of
this architecture is that complex environment functionality can be added just
via the plugin concept: this allows users to combine/exchange functionality in
a transparent way, without touching the code of the kernel system. In our
case, jABC can itself be seen as an Eclipse plugin, which, in addition to the
ETI plugin, offers plugins for model checking, local checking, and a tracer.
Dually, Eclipse can also be seen as an jABC plugin, enhancing the power of
the jABC as a development environment. In particular, users may handily ex-
change Eclipse with their favorite Java development environment (or they may
use jETI/jABC in a stand-alone fashion), and our game-based model checker
[5] with their tool of trust, without having to touch anything of the jABC and
jETI implementation.

5 Conclusions and Future Work

We have presented jETI, a tool for remote tool integration, which overcomes
the bottlenecks of the ETI platform observed over the past seven years. Based
on our remote tool integration and execution philosophy, jETI drastically lowers
the entrance hurdle for tool providers and allows upgrading of tools essentially
for free. In combination with the change to a ‘pure Java’ approach, jETI has the
unique potential to become a standard for enhancing Java development envi-
ronments with remote component execution, high level coordination, and formal
methods-based control. We are planning to make jETI available as open source
for this purpose in the near future.

Our current implementation must still be sees as a prototype, a status, which
we want to overcome by the end of 2005, which, besides others, requires a redevel-
opment of the graphical user interface in particular for supporting the Semantic
Web and the synthesis functionality. We plan to start the β-testing phase for
a version hosted by us in Spring 2005, followed by a first system delivery to
partners half a year later.



562 T. Margaria, R. Nagel, and B. Steffen

References

1. Tim Berners-Lee, James Hendler, Ora Lassila: The Semantic Web Scientific Amer-
ican, May 2001.

2. Eclipse Foundation: http://www.eclipse.org/
3. T. Margaria: Web Services-Based Tool-Integration in the ETI Platform, SoSyM,

Int. Journal on Software and System Modelling, to appear, Springer Verlag
(Springer Online First DOI: 10.1007/s10270-004-0072-z).

4. T. Margaria, R. Nagel, B. Steffen: Remote Integration and Coordination of Ver-
ification Tools in JETI, Proc. of ECBS 2005, 12th Annual IEEE Int. Conf. and
Workshop on the Engineering of Computer Based Systems, 4-7 April 2005, Wash-
ington DC (USA), IEEE Press.

5. Markus Müller-Olm, Haiseung Yoo: MetaGame: An Animation Tool for Model-
Checking Games, Proc. TACAS 2004, LNCS 2988, pp.163-167.

6. B. Steffen: “Characteristic Formulae,” Proc. ICALP’89, Stresa (I), July 1989,
LNCS 372, Springer Verlag, 1989.

7. B. Steffen, A. Ingolfsdottir: “Characteristic Formulae for Finite State Processes,”
Information and Computation, Vol. 110, No. 1, 1994.

8. B. Steffen, T. Margaria, V. Braun: The Electronic Tool Integration platform: con-
cepts and design, [10], pp. 9-30.

9. B. Steffen, T. Margaria, A. Claßen: Heterogeneous Analysis and Verification for
Distributed Systems, “SOFTWARE: Concepts and Tools” Vol. 17, N.1, pp. 13-25,
March 1996, Springer Verlag.

10. Special section on the Electronic Tool Integration Platform, Int. Journal on Software
Tools for Technology Transfer, Vol. 1, Springer Verlag, November 1997

11. SUN Microsystems. Java WebService Developer Pack http://java.sun.com/ web-
services/

12. Tomcat homepage: http://jakarta.apache.org/tomcat/
13. WebServices.Org - homepage of the WebServices and SOA communities:

http://www.webservices.org/
14. W3C. SOAP http://www.w3.org/TR/SOAP/
15. Web Service Choreography Interface (WSCI) 1.0, W3C Note, 8 August 2002,

http://www.w3.org/TR/2002/NOTE-wsci-20020808.


	Motivation
	jETI as an Integration Tool
	Formal Methods in jETI: The Coordination Feature
	jETI: The Architecture
	Conclusions and Future Work



