
Localization and Register Sharing for Predicate
Abstraction

Himanshu Jain�, Franjo Ivančić, Aarti Gupta, and Malay K. Ganai

NEC Laboratories America, 4 Independence Way,
Suite 200, Princeton, NJ 08540

Abstract. In the domain of software verification, predicate abstraction has e-
merged to be a powerful and popular technique for extracting finite-state models
from often complex source code. In this paper, we report on the application of
three techniques for improving the performance of the predicate abstraction re-
finement loop. The first technique allows faster computation of the abstraction.
Instead of maintaining a global set of predicates, we find predicates relevant to
various basic blocks of the program by weakest pre-condition propagation along
spurious program traces. The second technique enables faster model checking
of the abstraction by reducing the number of state variables in the abstraction.
This is done by re-using Boolean variables to represent different predicates in the
abstraction. However, some predicates are useful at many program locations and
discovering them lazily in various parts of the program leads to a large number
of abstraction refinement iterations. The third technique attempts to identify such
predicates early in the abstraction refinement loop and handles them separately
by introducing dedicated state variables for such predicates. We have incorpo-
rated these techniques into NEC’s software verification tool F-Soft, and present
promising experimental results for various case studies using these techniques.

1 Introduction

In the domain of software verification, predicate abstraction [2, 7, 9, 11] has emerged
to be a powerful and popular technique for extracting finite-state models from often
complex source code. It abstracts data by keeping track of certain predicates on the data.
Each predicate is represented by a Boolean variable in the abstract program, while the
original data variables are eliminated. The application of predicate abstraction to large
programs depends crucially on the choice and usage of the predicates. If all predicates
are tracked globally in the program, the analysis often becomes intractable due to the
large number of predicate relationships. In Microsoft’s SLAM [4] toolkit, this problem
is handled by generating coarse abstractions using techniques such as Cartesian approx-
imation and the maximum cube length approximation [3]. These techniques limit the
number of predicates in each theorem prover query. The refinement of the abstraction
is carried out by adding new predicates. If no new predicates are found, the spurious
behavior is due to inexact predicate relationships. Such spurious behavior is removed
by a separate refinement algorithm called Constrain [1].

� The author is now at the School of Computer Science, Carnegie Mellon University.

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 397–412, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

398 H. Jain et al.

The BLAST toolkit [13] introduced the notion of lazy abstraction, where the ab-
straction refinement is completely demand-driven to remove spurious behaviors. Recent
work [14] describes a new refinement scheme based on interpolation [8], which adds new
predicates to some program locations only, which we will call henceforth localization of
predicates. On average the number of predicates tracked at a program location is small
and thus, the localization of predicates enables predicate abstraction to scale to larger
software programs. In this paper we describe three novel contributions:

• Our first contribution is inspired by the lazy abstraction approach and the localization
techniques implemented in BLAST. While BLAST makes use of interpolation, we
use weakest pre-conditions to find predicates relevant at each program location.
Given an infeasible trace s1; . . . ;sk, we find predicates whose values need to be
tracked at each statement si in order to eliminate the infeasible trace. For any program
location we only need to track the relationship between the predicates relevant at
that location. Furthermore, since we use predicates based on weakest pre-conditions
along infeasible traces, most of the predicate relationships are obtained from the
refinement process itself. This enables us to significantly reduce the number of calls
to back-end decision procedures leading to a much faster abstraction computation.

• The performance of BDD-based model checkers depends crucially on the number of
state variables. Due to predicate localization most predicates are useful only in certain
parts of the program. The state variables corresponding to these predicates can be
reused to represent different predicates in other parts of the abstraction, resulting in a
reduction of the total number of state variables needed. We call this abstraction with
register sharing. This constitutes our second technique which reduces the number
of state variables, enabling more efficient model checking of the abstract models.

• While the above techniques speed up the individual computations and the model
checking runs of the abstractions, they might result in too many abstraction refine-
ment iterations. This can happen if the value of a certain predicate needs to be tracked
at multiple program locations, i.e., if the predicate is useful globally or at least in
some large part of the program. Since we add predicates lazily only along infeasible
traces, the fact that a predicate is globally useful for checking a property will be
learned only through multiple abstraction refinement iterations. We make use of a
simple heuristic for deciding when the value of a certain predicate may need to be
tracked globally or in a complete functional scope. If the value of a predicate needs
to be tracked in a large scope, then it is assigned a dedicated state variable which is
not reused for representing the value of other predicates in the same scope.

Further Related Work: Rusu et al. [20] present a framework for proving safety prop-
erties that combines predicate abstraction, refinement using weakest pre-conditions and
theorem proving. However, no localization of predicates is done in their work. Namjoshi
et al. [18] use weakest pre-conditions for extracting finite state abstractions, from pos-
sibly infinite state programs. They compute the weakest pre-conditions starting from an
initial set of predicates derived from the specification, control guards etc. This process
is iterated until a fix-point is reached, or a user imposed bound on the number of it-
erations is reached. In the latter case, the abstraction might be too coarse to prove the
given property. However, no automatic refinement procedure is described. The MAGIC

Localization and Register Sharing for Predicate Abstraction 399

tool [5] also makes use of weakest pre-conditions in a similar way. Both approaches have
the disadvantage that the number of predicates tracked at each program location can be
much higher, which may make the single model checking step difficult. In contrast, we
propagate the weakest pre-conditions lazily, that is, only to the extent needed to remove
infeasible traces. In order to check if a sequence of statements in the C program is
(in)feasible we use a SAT-solver as in [16]. The relationships between a set of predicates
is found by making use of SAT-based predicate abstraction [6, 17]. We further improve
the performance of SAT-based simulation of counterexamples and abstraction compu-
tation by making use of range analysis techniques [19, 21] to determine the maximum
number of bits needed to represent each variable in the given program.

In the experiments presented in Section 5, F-Soft computes a single BDD repre-
senting the reachable set of states. As is done in SLAM for example, F-Soft is able
to partition the BDD into subsets according to the basic blocks. However, the effects
discussed in this paper still carry over to such a scheme as the individual BDDs will
be smaller and contain fewer state variables in the support set. This is due to the fact
that prior approaches cannot quantify out uninteresting predicates since their value may
be important in following basic blocks. The information computed in our approach
gives us a more accurate classification of which predicates are useful in a given basic
block.

Outline: The following section describes the pre-processing of the source code with our
software verification tool F-Soft [15] and the localized abstraction refinement frame-
work based on weakest pre-condition propagation. F-Soft allows both SAT-based and
BDD-based bounded and unbounded model checking of C. Here, we focus on our BDD-
based model checker since BDDs often work well enough for abstract models with few
state variables. The third section presents an overview of the computation of the abstrac-
tion with and without register sharing, while the fourth section describes our approach
of dedicating abstract state variables to predicates. Section 5 discusses the experimental
results, and we finish this paper with some concluding remarks.

2 A Localized Abstraction-Refinement Framework

2.1 Software Modeling

In this section, we briefly describe our software modeling approach that is centered
around basic blocks as described in [15]. The preprocessing of the source code is per-
formed before the abstraction refinement routine is invoked. A program counter variable
is introduced to monitor progress in the control flow graph consisting of basic blocks.
Our modeling framework allows bounded recursion through the introduction of a fixed
depth function call stack, when necessary, and introduces special variables representing
function return points for non-recursive functions. Due to space limitation, we omit the
details of our handling of pointer variables, which can be found in [15]. It is based on
adding simplified pointer-free assignments in the basic blocks.

400 H. Jain et al.

2.2 Localization Information

The formula φ describes a set of program states, namely, the states in which the value of
program variables satisfy φ. The weakest pre-condition [10] of a formula φ with respect
to a statement s is the weakest formula whose truth before the execution of s entails the
truth of φ after s terminates. We denote the weakest pre-condition of φ with respect to
s by WP (φ,s). Let s be an assignment statement of the form v = e; and φ be a C
expression. Then the weakest pre-condition of φ with respect to s, is obtained from φ
by replacing every occurrence of v in φ with e.

Given an if statement with condition p, we write assume p or assume ¬p, de-
pending upon the branch of the if statement that is executed. The weakest pre-condition
of φ with respect to assume p, is given as φ∧p. As mentioned earlier, pointer assign-
ments are rewritten early on in our tool chain, thus allowing us to focus here on only
the above cases. The weakest pre-condition operator is extended to a sequence of state-
ments by WP (φ,s1;s2) = WP (WP (φ,s2),s1). A sequence of statements s1; . . . ;sk

is said to be infeasible, if WP (true,s1; . . . ;sk) = false. Note that for ease of presen-
tation, we present the following material using individual statements while the actual
implementation uses a control flow graph consisting of basic blocks.

We define child(s) to denote the set of statements reachable from s in one step in
the control flow graph. Each statement s in the program keeps track of the following
information: (1) A set of predicates denoted as local(s) whose values need to be tracked
before the execution of s. We say a predicate p is active at the statement s, if p ∈
local(s). (2) A set of predicate pairs denoted as transfer(s). Intuitively, if (pi,pj) ∈
transfer(s), then the value of pj after s terminates is equal to the value of pi before the
execution of s. Formally, a pair (pi,pj) ∈ transfer(s) satisfies the following conditions:

- pi ∈ {True,False}∪ local(s).
- There exists s′ ∈ child(s), such that pj ∈ local(s′).
- If s is an assignment statement, then pi = WP (pj ,s).
- If s is an assume statement, then pi = pj .

We refer to the sets local(s) and transfer(s) together as the localization information
at the statement s. This information is generated during the refinement step, and is used
for creating refined abstractions which eliminate infeasible traces.

Example: Consider the code in Fig. 1(a) and the localization information in Fig. 1(d).
Since (p4,p3) ∈ transfer(s1) and s1 is an assignment, it means that p4(c = m) is the
weakest pre-condition of p3(x = m) with respect to statement s1. The value of predicate
p4 is useful only before the execution of s1. After the execution of s1, predicate p3
becomes useful.

2.3 Refinement Using Weakest Pre-condition Propagation

Let s1; . . . ;sk be an infeasible program trace. If si is of the form assume pi, then the
weakest pre-condition of pi is propagated backwards from si until s1. When computing
the weakest pre-condition of a predicate pi with respect to a statement sj of the form
assume pj , we propagate the weakest pre-conditions of pi and pj separately. That is,

Localization and Register Sharing for Predicate Abstraction 401

s
1 : x = c;
2 : y = c + 1;
3 : if (x == m);
4 : if (y != m+1);
5 : ERROR: ;

(a)

s
1 : x = c;
2 : y = c + 1;
3 : assume (x == m);
4 : assume (y != m+1);

(b)

s local(s) transfer(s)
1 : {p2} {(p2,p2)}
2 : {p2} {(p2,p1)}
3 : {p1} {(p1,p1)}
4 : {p1}

(c)

s local(s) transfer(s)
1 : {p2,p4} {(p2,p2),(p4,p3)}
2 : {p2,p3} {(p2,p1),(p3,p3)}
3 : {p1,p3} {(p1,p1)}
4 : {p1}

(d)

Fig. 1. (a) A simple C program. (b) An infeasible program trace. (c) Status of local(s) and
transfer(s) sets after the first iteration of the refinement algorithm (see Fig. 2). Predicates p1,p2
denote y �= m+1 and c �= m, respectively. (d) New additions to the local(s) and transfer(s)
in the second iteration. p3,p4 denote x = m and c = m, respectively

we do not introduce a new predicate for pi ∧pj . This is done to ensure that the predicates
remain atomic. The local and the transfer sets for the various statements are updated
during this process. The complete algorithm is given in Fig. 2.

Example: Consider the C program in Fig. 1(a) and an infeasible trace in Fig. 1(b).
Assume that initially local(s) and transfer(s) sets are empty for each s. The refinement
algorithm in Fig. 2 is applied to the infeasible trace. The localization information after
the first iteration (i = 4) and second iteration (i = 3) of the outer loop in the refinement
algorithm, is shown in Fig. 1(c) and Fig. 1(d), respectively. No change occurs to the
localization information for i = 2 and i = 1, since s2 and s1 do not correspond to
assume statements.

If s1; . . . ;sk is infeasible, then WP (true,s1; . . . ;sk) = false by definition. Intu-
itively, the atomic predicates in WP (true,s1; . . . ;sk) appear in local(s1). Thus, by
finding the relationships between the predicates in local(s1), it is possible to construct a
refined model which eliminates the infeasible trace. When an infeasible trace s1; . . . ;sk

is refined using the algorithm in Fig. 2, s1 is stored into a set of statements denoted by
marked. If a statement s is in the marked set, and the size of local(s) is less than a
certain threshold, then the abstraction routine computes the relationships between the
predicates in local(s) using SAT-based predicate abstraction [6, 17]. Otherwise, these
relationships are determined lazily by detection of spurious abstract states [1].

Proof Based Analysis: The refinement algorithm described in Fig. 2 performs a back-
ward weakest pre-condition propagation for each assume statement in the infeasible
trace. However, neither all assume statements nor all assignments may be necessary for
the infeasibility of the given trace. Propagating the weakest pre-conditions for all such
statements results in an unnecessary increase in the number of predicates active at each

402 H. Jain et al.

Input: An infeasible trace s1; . . . ;sk

Algorithm:
1: for i = k downto 1 //outer for loop
2: if si is of form (assume φi) then //propagate weakest pre-conditions
3: local(si) = local(si)∪{φi} //localize φi at si

4: seed = φi

5: for j = i−1 downto 1 //inner for loop
6: if sj is an assignment statement then
7: wp = WP (seed,sj)
8: else
9: wp = seed
10: local(sj) = local(sj) ∪ {wp} //localize wp at sj

11: transfer(sj) = transfer(sj) ∪ {(wp,seed)}//store predicate relationships
12: seed = wp
13: if seed is constant (i.e, true or false) then exit inner for loop
14: end for
15: end if
16: end for
17: marked = marked ∪ {s1}

Fig. 2. Predicate localization during refinement

statement in the infeasible trace. We make use of the SAT-based proof of infeasibility of
the given trace to determine the statements for which the weakest pre-condition propa-
gation should be done [12]. Thus, the localization information is updated partially, in a
way that is sufficient to remove the spurious behavior. The computation of an abstract
model using the localization information is described in the next section.

3 Computing Abstractions

We describe the abstraction of the given C program by defining a transition system
T . The transition system T = (Q,I,R) consists of a set of states Q, a set of initial
states I ⊆ Q, and a transition relation R(q,q′), which relates the current state q ∈ Q
to a next-state q′ ∈ Q. The abstract model preserves the control flow in the original
C program. Let P = {p1, . . . ,pk} denote the union of the predicates active at various
program locations. We first describe an abstraction scheme where each predicate pi is
assigned one unique Boolean variable bi in the abstract model. The state space of the
abstract model is |L| · 2k, where L is the set of control locations in the program. We
call this scheme abstraction without register sharing. Next, we describe a scheme where
the number of Boolean variables needed to represent the predicates in P is equal to the
maximum number of predicates active at any program location. The size of the abstract
model is given by |L| · 2k′

, where k′ = max1≤i≤|L||local(si)|. We call this scheme
abstraction with register sharing. Due to the localization of predicates, k′ is usually
much smaller than k, which enables faster model checking of the abstraction obtained
using register sharing.

Localization and Register Sharing for Predicate Abstraction 403

3.1 Abstraction Without Register Sharing

Let PC denote the vector of state variables used to encode the program counter. In
abstraction without register sharing each predicate pi has a state variable bi in the ab-
stract model. Each state in the abstraction corresponds to the valuation of |PC|+k state
variables, where k is the total number of predicates. In the initial state PC is equal to
the value of the entry location in the original program. The state variables correspond-
ing to the predicates are initially assigned non-deterministic Boolean values. Given a
statement sl and a predicate pi the following cases are possible:

- sl is either an assume statement or an assignment statement that does not assign to any
variable in pi. That is, after executing sl the value of predicate pi remains unchanged.
Thus, in the abstract model the value of the state variable bi remains unchanged after
executing sl. We denote the set of all statements where pi is unchanged as unc(pi).
- sl assigns to some variable in pi. Let pj denote the weakest pre-condition of pi with
respect to sl. If the predicate pj is active at sl, that is pj ∈ local(sl), and (pj ,pi) ∈
transfer(sl), then after executing sl, the value of predicate pi is the same as the value
of predicate pj before executing sl. In the abstract model this simply corresponds to
transferring the value of bj to bi at sl. If the predicate pj is not active at sl, then the
abstract model assigns a non-deterministic Boolean value to bi at sl. This is necessary
to ensure that the abstract model is an over-approximation of the original program.

We denote the set of all statements that can update the value of a predicate pi as
update(pi). The set of statements where the weakest pre-condition of pi is available
is denoted by wpa(pi). Using the localization information from Sec. 2.2, wpa(pi) is
defined as follows: wpa(pi) := {sl|sl ∈ update(pi) ∧ ∃pj . (pj ,pi) ∈ transfer(sl)}.

We use inp(pi) to denote the set of statements that assign a non-deterministic value
vi to the state variable bi. This set is defined as update(pi)\wpa(pi). Let cil denote the
state variable corresponding to the weakest pre-condition of predicate pi with respect
to sl. We use pcl to denote that the program counter is at sl, that is PC = l, and vi to
denote a non-deterministic input variable. The next state function for the variable bi is
then defined as follows:

b′
i :=

[∨
sl∈unc(pi)

(pcl ∧ bi)
]
∨

[∨
sl∈wpa(pi)

(pcl ∧ cil)
]
∨

[∨
sl∈inp(pi)

(pcl ∧vi)
]

(1)

Note that no calls to a decision procedure are needed when generating the next-state
functions. All the required information is gathered during the refinement step itself by
means of weakest pre-condition propagation.

Example: Consider the abstraction of the program in Fig. 3(a) with respect to the lo-
calization information given in Fig. 3(b). The predicate p1 (y �= m+1) is updated at
statement s2, and its weakest pre-condition p2 (c �= m) is active at s2, and (p2,p1) ∈
transfer(s2). So the next state function for the state variable representing p1 is given
as follows: b′

1 := (pc2 ∧ b2) ∨ ((pc1 ∨ pc3 ∨ pc4) ∧ b1). The other next state functions
are given as follows: b′

2 := b2, b′
4 := b4, and b′

3 := (pc1 ∧ b4)∨ ((pc2 ∨pc3 ∨pc4)∧ b3).
The resulting abstraction is shown in Fig. 3 (c). For simplicity the control flow is shown
explicitly in the abstraction.

404 H. Jain et al.

s
1: x = c;
2: y = c + 1;
3: if (x == m)
4: if (y != m+1)
5: ERROR:;

(a)

local(s) transfer(s)
{p2,p4} {(p2,p2),(p4,p3)}
{p2,p3} {(p2,p1),(p3,p3)}
{p1,p3} {(p1,p1)}
{p1}

(b)

Abstraction
1: b3 = b4;
2: b1 = b2;
3: if (b3)
4: if (b1)
5: ERROR: ;

(c)

s Mapping
1: {p2 : b1,p4 : b2}
2: {p2 : b1,p3 : b2}
3: {p1 : b1,p3 : b2}
4: {p1 : b1}
5:

(d)

Abstraction
1: skip;
2: skip;
3: if (b2)
4: if (b1)
5: ERROR: ;

(e)

Global constraint for (c):
b2 ↔ ¬b4

Local constraint for (e):
(PC = 1) → (b1 ↔ ¬b2)

(f)

Fig. 3. (a) C program. (b) Localization information for the program where p1,p2,p3,p4 denote
the predicates y �= m + 1, c �= m,x = m,c = m, respectively. (c) Abstraction with no register
sharing. Boolean variable bi represents the value of pi in the abstraction. (d) Mapping of predicates
in local(s) for each s to the Boolean variables (register sharing). (e) Abstraction with register
sharing. (f) Global constraint and Local constraint for abstractions in (c) and (e) , respectively

Global Constraint Generation: The precision of the abstraction can be increased by
finding the relationships between the predicates in local(s) for some s. For example,
in Fig. 3(b) the relationship between the predicates in local(s1) results in a global
constraint, b2 ↔ ¬b4. This constraint holds in all states of the abstract model of Fig. 3
(c) as the Boolean variables b2 and b4 always represent the same predicate throughout
the abstraction without register sharing. The abstraction without register sharing given
in Fig. 3(c) combined with the global constraint in Fig. 3(f) is sufficient to show that the
ERROR label is not reachable in the C program given in Fig. 3(a). Note that we could
have simplified the computation here by recognizing that p4 = ¬p2, which we omit for
presentation purposes only.

The constraint generation is done only for some of the statements which are marked
during the refinement (Fig. 2, line no. 17). We use SAT-based predicate abstraction
[6, 17] to find the relationships between the predicates in local(s) for such statements.
This is the only time we use any decision procedure other than checking for the feasibility
of traces. Due to the computational cost of enumerating the set of solutions, we only
perform this computation for very small sets of predicates. Other relationships are then
discovered on demand based on spurious abstract states [1].

3.2 Abstraction with Register Sharing

In abstraction with no register sharing, the state-space of the abstract model is |L| ·2|P | ,
where P is the set of predicates, and L is the set of locations in the given program. Thus,
when the number of predicates is large, model checking of the abstraction can become
a bottleneck even with a symbolic representation of the state space. We make use of the

Localization and Register Sharing for Predicate Abstraction 405

locality of predicates to speed up the model checking of the abstraction. This is done
by reducing the number of (Boolean) state variables in the abstraction. The fact that
each state variable in the abstract model is only locally useful can be used to represent
different predicates in different parts of the program using the same state variable. We
call the reuse of state variables in the abstract model register sharing.

Example: Consider the C program in Fig. 3(a) and the localization information in
Fig. 3(b). The abstraction of this program with no register sharing in Fig. 3(c), con-
tains four state variables, one for each predicate. However, the number of predicates
active at any program statement is max1≤i≤4|local(si)| = 2. Intuitively, it should be
possible to create an abstraction with just two state variables.

The predicates p2,p4 are active at program location 1, so we introduce two Boolean
variables b1, b2, to represent each of these predicates, respectively. After the execution
of s1, predicate p4 is no longer active, and the state variable b2 can be used to represent
some other predicate. Predicate p3 becomes active at s2, so we can reuse the abstract
variable b2 to represent p3 at s2. In a similar fashion, b1 can be reused to represent
predicate p1 at program locations s3 and s4. We use p : b to denote that the predicate p
is represented by the state variable b. The mapping of active predicates at each program
location to the state variables is given in Fig 3(d).

The abstraction with register sharing is obtained by translating the predicate relation-
ships in transfer(s) for each s, according to the mapping discussed above. Continuing
our example, (p4,p3) ∈ transfer(s1) in Fig. 3(b), the value of the state variable rep-
resenting p4 at s1, must be transferred to the state variable representing p3, afterwards.
Since both p4 and p3 are represented by the same state variable b2, the abstraction for
s1 does not alter the value of b2. The abstraction using only two state variables (b1, b2)
is shown in Fig 3(e). The skip statement means that the values of the state variables b1
and b2 remain unchanged for that statement.

Mapping Predicates to State Variables: Recall, that p = {p1, . . . ,pk} denotes the set of
predicates. Let B = {b1, . . . , bl} be the set of state variables in the abstraction, where
l equals the maximum number of active predicates at any program location. For every
statement s, the predicates relevant at s are mapped to unique state variables in B. Let
map be a function that takes a statement s and a predicate p as arguments. If p ∈ local(s),
then the result of map(s,p) is a state variable b ∈ B; otherwise, the result is ⊥. Recall
that child(s) denotes the set of statements reachable from s in one step in the control
flow graph. The constraints to be satisfied by map are as follows:

– Two distinct predicates which are active together at the same statement should not
be assigned the same Boolean variable in the abstraction for that statement.

∀s∀pi,pj ∈ local(s) [pi �= pj → map(s,pi) �= map(s,pj)]

– Consider statement s and (p1,p2) ∈ transfer(s). By definition there exists s′ ∈
child(s) where p2 is active, that is p2 ∈ local(s′). This case is shown in Fig. 4(a).
Suppose the predicate p1 is mapped to bi in s and p2 is mapped to bj in s′. The
abstraction for the statement s will assign the value of bi to bj . So bj should not be

406 H. Jain et al.

p2p2 p3 p2p2 bj bk

bj bi

p3

p1 bi:

bjp3 bk

bp1 :

bp2p2 :

p1

p2

s

s’ s’’

: :

=

!=!=

(a) (b)

s’

s

(c)

b = *

Fig. 4. (a) Statement s and two successors s′ and s′′. Predicates p1,p2,p3 are active at s, s′, and
s′′, respectively. (b) Abstraction with register sharing, where (p1,p2) ∈ transfer(s). Predicate
p1,p2 are mapped to bi, bj , respectively, in the abstraction. Predicate p3 �= p2 should not be
mapped to bj for safe abstraction i.e., an over-approximation of the original program. (c) Boolean
variable b is used to represent two distinct predicates p1 and p2 on the same path. It is set to a *
(non-deterministic value) between s and s′ to ensure safe abstraction

used to represent a predicate p3, where p3 �= p2, in any other successor of s. This is
because there is no relationship between the value of the predicate p1 at s and the
predicate p3 at s′′. This constraint is shown in Fig. 4(b).

We now describe the algorithm which creates an abstraction in the presence of register
sharing. Let abs(s) be a set of Boolean pairs associated with each statement s. Intuitively,
if (bl, bm) ∈ abs(s), then in the abstraction the value of bm after s terminates is equal to
the value of bl before the execution of s. Formally, abs(s) is defined as follows:

abs(s) := {(bl, bm)|∃(pi,pj) ∈ transfer(s). bl = map(s,pi) ∧
∃s′ ∈ child(s). bm = map(s′,pj)}.

Given a Boolean variable bi and a statement sl, the following cases are possible:

– sl updates the value of bi. That is, there exists a bj ∈ B such that (bj , bi) ∈ abs(sl).
We denote the set of all statements which update bi as update(bi). The function
rhs(sl, bi) returns the Boolean variable which is assigned to bi in the statement sl.

– sl assigns a non-deterministic value to bi. The set of all such statements is denoted by
nondet(bi). In order to understand the use of this set, consider a Boolean variable
b which is used to represent two distinct predicates p1 and p2 on the same path.
Assume that b is not used to represent any other predicate between the statements
s and s′. Since p1 and p2 are not related, the value of b when it is representing p1
should not be used when b is representing p2. So b is assigned a non-deterministic
value between the path starting from s to s′. This is necessary to ensure that the
abstraction is an over-approximation of the original program. This case is shown in
Fig. 4(c).

– The value of bi is a don’t-care at statement sl. The value of bi is a don’t care for all the
statements which are not present in update(bi) or nondet(bi). In such cases, we set
the value of bi to false at these statements, in order to simplify its conjunction with
the program counter variable to false. This simplifies the overall transition relation.

Localization and Register Sharing for Predicate Abstraction 407

Given the above information the next state function for the variable bi is defined as
follows (we use an input vi for introducing non-determinism and pcl to denote PC = l):

b′
i :=

[∨
sl∈update(bi)

(pcl ∧ rhs(sl, bi))
]
∨

[∨
sl∈nondet(pi)

(pcl ∧vi)
]
. (2)

Local constraint generation: The abstraction can be made more precise by relating the
predicates in local(s) for some s. For example, in Fig. 3(b) the predicates in local(s1)
satisfy the constraint that p2 ↔ ¬p4. In order to add this constraint to the abstraction,
we need to translate it in terms of the Boolean variables. The mapping given in Fig. 3(d)
assigns Boolean variables b1, b2 to p2, p4, at s1 respectively. This leads to a constraint
(PC = 1) → (b1 ↔ ¬b2). This is called a local constraint as it is useful only when
PC = 1. We cannot omit the PC = 1 term from the constraint as this would mean
that b1 ↔ ¬b2 holds throughout the abstraction. The abstraction with register sharing
in Fig. 3(e) combined with the local constraint in Fig. 3(f) is sufficient to show that the
ERROR label is not reachable in the C program given in Fig. 3(a).

4 Dedicated State Variables

Register sharing enables the creation of abstract models with as few Boolean variables
as possible which enables more efficient model checking of the abstractions. However,
register sharing might also result in a large number of refinement iterations as described
in the following. Consider a sequence SE of statements from s to s′, which does not
modify the value of a predicate p. Suppose p is localized at the statements s,s′, but not at
any intermediate statement in SE. In abstraction with register sharing, it is possible that
p is represented by two different Boolean variables b1 and b2 at s and s′, respectively.
Because the value of p remains unchanged along SE, the value of b1 at s should be equal
to the value of b2 at s′. If this is not tracked, we may obtain a spurious counterexample
by assigning different values to b1 at s and b2 at s′. This leads to a refinement step, which
localizes the predicate p at every statement in SE, to ensure that the value of predicate p
does not change along SE in subsequent iterations. We should note that such behavior
is handled in the abstraction without register sharing approach through the use of the
unchanged set denoted by unc in Eqn. (1) described earlier.

If p is discovered frequently in different parts of the program through various spurious
counterexamples, then using the abstraction with register sharing will lead to many
abstraction refinement iterations. This problem can be avoided, if p is represented by
exactly one Boolean variable b in a large scope of the abstraction. This is because the
value of b will not be changed by any statement in SE, and thus, the value of b at s′ will
be the same as that at s. We call a Boolean variable which represents only one predicate
for a large scope a dedicated state variable. The next state function for a dedicated state
variable b is computed using Eqn. (1).

Hybrid Approach: Initially, when a predicate is discovered it is assigned a Boolean
variable, which can be reused for representing different predicates in other parts of the
abstraction. If the same predicate is discovered through multiple counterexamples in the

408 H. Jain et al.

various parts of the program, then it is assigned a dedicated Boolean variable for a global
or functional scope of the program depending on the variables used in the predicate. The
decision about when to assign a dedicated Boolean variable to a predicate is done by
making use of the following heuristic.

For each predicate p, let usage(p, i) denote the number of statements where p is
localized in the iteration number i of the abstraction refinement loop. If usage(p, i)
exceeds a certain user-defined threshold TH , then p is assigned a dedicated Boolean
variable. If TH = 0, then every predicate will be assigned a dedicated state variable as
soon as it is discovered. This is similar to performing abstraction with no register sharing
for all state variables. On the other hand, if TH = |L|+1, where |L| is the total number
of statements in the program, then none of the predicates will be assigned a dedicated
state variable. This allows complete reuse of the abstract variables, which is similar to
abstraction with register sharing. For any intermediate value of TH we have a hybrid of
abstraction with and without register sharing.

In the hybrid approach, it is possible to have global constraints on the dedicated state
variables. This saves refinement iterations where the same constraint is added locally in
various parts by means of counterexamples. We can still have local constraints on the
state variables which are reused. Furthermore, we hope to discover as early as possible
whether a predicate should be given a dedicated state variable by having a low threshold
for the early iterations of the abstraction refinement loop, which increases as the number
of iterations increases. Predicting early on that a predicate may need a dedicated state
variable reduces the number of abstraction refinement iterations substantially.

5 Experimental Results

We have implemented these techniques in NEC’s F-Soft [15] verification tool. All
experiments were performed on a 2.8GHz dual-processor Linux machine with 4GB
of memory. We report our experimental results on the TCAS and Alias case studies.
TCAS (Traffic Alert and Collision Avoidance System) is an aircraft conflict detection
and resolution system used by all US commercial aircrafts. We used an ANSI-C version
of a TCAS component available from Georgia Tech. Even though the pre-processed
program has only 1652 lines of code, the number of predicates needed to verify the
properties is non-trivial for both F-Soft and BLAST. We checked 10 different safety
properties of the TCAS system. Alias is an artificial benchmark which makes extensive
use of pointers. Each property was encoded as a certain error label in the code. If the
label is not reachable, then the property is said to hold. Otherwise, we report the length
of the counterexample in the "Bug" column in Table 1. CPU times are given in seconds,
and we set a time limit of one hour for each analysis. Note, that many implementation
details of F-Soft and BLAST not discussed here may impact the measured runtimes.

5.1 Predicate Localization, Register Sharing, and Dedicated State Variables

We first experimented with no localization of predicates. However, this approach did
not scale, as the abstraction computation becomes a bottleneck. We next experimented
with localization of predicates using weakest pre-conditions. The results of applying

Localization and Register Sharing for Predicate Abstraction 409

only localization and abstraction without register sharing is shown under the "Localize"
heading in the Table 1. The "Time Abs MC" column gives the total time, followed by the
breakup of total time into the time taken by abstraction (Abs), model checking (MC),
respectively. We omit the time taken by refinement, which is equal to Time - (Abs +
MC) for each row. The "P" and the "I" columns give the total number of predicates,
and the total number of iterations, respectively. Two observations can be made from the
"Localize" results: 1) Due to the localization of predicates, the abstraction computation
is no longer a bottleneck. 2) Model checking takes most of the time, since for each
predicate a state variable is created in the abstract model. Note that the model checking
step is the cause of the timeouts in three rows under the "Localize" results.

Next, we experimented with register sharing. The number of state variables in the
abstraction was reduced, and the individual model-checking steps became faster. How-
ever, as discussed in Sec. 4 this approach resulted in too many abstraction refinement
iterations. This problem was solved by discovering on-the-fly whether a predicate should
be assigned a dedicated state variable, that is, a state variable which will not be reused. A
dedicated state variable is introduced for a predicate whose usage exceeds a progressively
increasing threshold, starting at 5% of the total number of program locations.

The results of combining these multiple techniques is given under the "Combined"
heading in Table 1. The "P Max Ded" column gives the total number of predicates (P),
followed by the maximum number of predicates active at any program location (Max),
and the total number of state variables which represent exactly one predicate, that is,
dedicated state variables (Ded). Observe that the time spent during model checking (MC)
has reduced significantly as compared to the "Localize" column.

We also experimented with the TH (threshold) parameter, which is used to determine
when a predicate is assigned a dedicated state variable. Fig. 5(a) shows the variation of
the total runtime with the initial value for the threshold. When the threshold is equal to
zero every predicate is assigned a dedicated state variable. This results in too many state
variables in the abstract model causing the total runtime to be high. However, as the

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

T
ot

al
 r

un
tim

e
(in

 s
ec

on
ds

)

Threshold (in percentage)

TCAS0
TCAS4

(a)

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30

N
um

be
r

of
 a

bs
tr

ac
tio

n
re

fin
em

en
t i

te
ra

tio
ns

Threshold (in percentage)

TCAS0
TCAS4

(b)

Fig. 5. (a) Variation in the total runtime with the threshold. (b) Variation in the total number of
abstraction refinement iterations with the threshold

410 H. Jain et al.

Table 1. Results for: 1) Localization, abstraction without register sharing ("Localize") . 2) Local-
ization, abstraction with register sharing, dedicated state variables ("Combined"). 3) BLAST with
interpolation ("BLAST"). A "-" indicates that the property holds. A "·" indicates that the bench-
mark could not be handled properly. A "TO" indicates a timeout of 1hr. We report the statistics
observed before timeout occurs

Bench Localize Combined BLAST Bug
-mark Time Abs MC P I Time Abs MC P Max Ded I Time P Max Avg I
TCAS0 245 7 196 71 32 36 5 15 65 26 18 31 96 85 24 10 33 -
TCAS1 1187 15 1069 108 44 161 9 118 96 35 25 38 256 137 43 17 42 -
TCAS2 952 10 882 74 38 104 25 51 95 31 24 36 148 108 31 11 40 -
TCAS3 940 15 864 91 36 46 17 17 73 22 15 33 172 101 26 10 44 152
TCAS4 1231 13 1111 97 39 88 9 48 90 34 25 32 182 149 38 13 51 166
TCAS5 1222 11 1128 79 41 141 8 98 98 37 29 31 105 114 31 10 33 -
TCAS6 TO 20 2270 117 49 330 16 266 109 40 33 40 293 158 41 14 69 179
TCAS7 1758 16 1627 79 47 64 10 29 94 28 21 33 287 125 30 11 63 160
TCAS8 TO 21 1988 84 51 119 13 68 106 34 27 41 181 116 31 11 46 -
TCAS9 TO 26 3349 113 58 250 14 186 106 34 27 44 322 140 40 14 61 179
ALIAS 50 6 33 61 11 6 2 1 55 25 15 9 · · · · · -

threshold is increased, the number of abstraction refinement iterations starts to increase
as shown in Fig. 5(b). The best runtime in our experiments has so far been obtained
for an initial threshold of 5%. Even such a small value for the threshold is effective
in separating the predicates which are globally relevant from those which are locally
useful. As the threshold is further increased very few predicates are assigned dedicated
state variables. One of the main advantages of choosing a small initial threshold is that
we are able to decide early on whether a predicate may need a dedicated state variable.
If we start with a higher initial threshold, the number of additional iterations needed for
a single predicate to receive a dedicated state variable increases too much.

The map function (see Section 3.2) is computed incrementally, as new predicates
are discovered. Suppose during refinement a predicate p gets added to local(s) for some
s. In order to find a state variable to represent the value of p at s, we first check if
some existing state variable can be reused without violating the constraints described
in Section 3.2. Let the total number of times reuse is possible be R. If no existing state
variable can be used, we introduce a new state variable for representing the value of p
at s. Let the total number of times a new state variable is introduced be C. The ratio
R/(C +R) measures the effectiveness of variable reuse in controlling the total number
of state variables. The value of this ratio is 88% on average across the TCAS benchmarks
and 81% for the ALIAS benchmark.

5.2 Comparison with BLAST
We first ran BLAST in the default mode without any options. However, the default
predicate discovery scheme in BLAST fails to find the new set of predicates during
refinement, and terminates without (dis)proving any of the TCAS properties. Next, we
tried the Craig interpolation [14] options (craig1 and craig2) provided by BLAST.
The BLAST manual recommends the use of predH7 heuristic with Craig interpolation.

Localization and Register Sharing for Predicate Abstraction 411

Of the various options to BLAST, craig2 and predH7 result in the best performance
when checking the TCAS properties. Table 1 gives the result of running BLAST with
these options under the "BLAST" heading. The "P Max Avg" column gives the total
number of predicates (P), followed by the maximum (Max) and the average (Avg) number
of predicates active at any program location (rounded to the nearest integer).

The best runtimes are shown in bold in Table 1. Note that the "Combined" technique
of F-Soft outperforms BLAST on 9 out of 11 benchmarks, and the number of iterations
required by "Combined" is less than that for "BLAST" in all cases. Recall that the size
of the abstraction is exponential in the maximum number of active predicates (Max).
This number is comparable for both BLAST and F-Soft, even though BLAST makes
use of a more complex refinement technique based on the computation of interpolants.

6 Conclusions and Future Work
The application of the predicate abstraction paradigm to large software depends crucially
on the choice and usage of the predicates. If all predicates are tracked globally in the
program, the analysis often becomes intractable due to the large number of predicate
relationships. In this paper we described various techniques for improving the overall
performance of the abstraction refinement loop. We presented experimental results in our
F-Soft [15] toolkit using the techniques of predicate localization, register sharing and
dedicated state variables, and showed how a combination of these techniques allowed
us to check properties requiring a large number of predicates.

There are a number of interesting avenues for future research. Theoretical compar-
ison between the use of interpolants [14] and the use of weakest pre-conditions for
localization of predicates will be useful. Other techniques for finding the right balance
between the predicates whose values are tracked locally and the predicates whose values
are tracked globally are worth further investigation. Furthermore, we need to experiment
with these heuristics for more and larger case studies as well.

Acknowledgment. We thank Rupak Majumdar and Ranjit Jhala for their help with
BLAST.

References

1. T. Ball, B. Cook, S. Das, and S. Rajamani. Refining approximations in software predicate
abstraction. In TACAS 04, pages 388–403. Springer, 2004.

2. T. Ball, R. Majumdar, T.D. Millstein, and S.K. Rajamani. Automatic predicate abstraction of
C programs. In Programming Language Design and Implementation, pages 203–213, 2001.

3. T. Ball, A. Podelski, and S.K. Rajamani. Boolean and Cartesian abstraction for model checking
C programs. In TACAS 01, volume 2031, 2001.

4. T. Ball and S.K. Rajamani. Automatically validating temporal safety properties of interfaces.
In SPIN Workshop on Model Checking of Software. Springer, 2001.

5. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software com-
ponents in C. In ICSE 03, pages 385–395. IEEE, 2003.

6. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of ANSI–C
programs using SAT. Formal Methods in System Design, 25:105–127, Sep–Nov 2004.

412 H. Jain et al.

7. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM
Symposium on Principles of Programming Languages, pages 238–252, 1977.

8. William Craig. Linear reasoning. In Journal of Symbolic Logic, pages 22:250–268, 1957.
9. S. Das, D. Dill, and S. Park. Experience with predicate abstraction. In Computer Aided

Verification, LNCS 1633, pages 160–171. Springer, 1999.
10. E. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
11. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV 97, pages

72–83. Springer, 1997.
12. A. Gupta, M.K. Ganai, P. Ashar, and Z. Yang. Iterative abstraction using SAT-based BMC

with proof analysis. In International Conference on Computer Aided Design (ICCAD), 2003.
13. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL 02, pages

58–70, 2002.
14. T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan. Abstractions from proofs. In

POPL 04, pages 232–244. ACM Press, 2004.
15. F. Ivančić, Z. Yang, M. Ganai, A. Gupta, and P. Ashar. Efficient SAT-based bounded model

checking for software verification. In Symposium on Leveraging Applications of Formal
Methods, 2004.

16. H. Jain, D. Kroening, and E. Clarke. Verification of SpecC using predicate abstraction. In
MEMOCODE 04, pages 7–16. IEEE, 2004.

17. S. K. Lahiri, R. E. Bryant, and B. Cook. A symbolic approach to predicate abstraction. In
CAV 03, pages 141–153. Springer, 2003.

18. Kedar S. Namjoshi and Robert P. Kurshan. Syntactic program transformations for automatic
abstraction. In CAV 00, number 1855 in LNCS, 2000.

19. R. Rugina and M.C. Rinard. Symbolic bounds analysis of pointers, array indices, and accessed
memory regions. In PLDI 00, pages 182–195, 2000.

20. Vlad Rusu and Eli Singerman. On proving safety properties by integrating static analysis,
theorem proving and abstraction. In TACAS 99, pages 178–192, 1999.

21. A. Zaks, F. Ivančić, H. Cadambi, I. Shlyakhter, Z. Yang, M. Ganai A. Gupta, and P. Ashar.
Range analysis for software verification. Submitted for publication, 2005.

	Introduction
	A Localized Abstraction-Refinement Framework
	Software Modeling
	Localization Information
	Refinement Using Weakest Pre-condition Propagation

	Computing Abstractions
	Abstraction Without Register Sharing
	Abstraction with Register Sharing

	Dedicated State Variables
	Experimental Results
	Predicate Localization, Register Sharing, and Dedicated State Variables
	Comparison with BLAST

	Conclusions and Future Work

