Skip to main content

Supercover of Non-square and Non-cubic Grids

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3322))

Abstract

We define algebraic discrete geometry of hexagonal- and rhombic-dodecahedral- grids on a plane in a space, respectively. Since, a hexagon and a rhombic-dodecahedron are elements for tilling on a plane and in a space, respectively, a hexagon and a rhombic-dodecahedron are suitable as elements of discrete objects on a plane and in a space, respectively. For the description of linear objects in a discrete space, algebraic discrete geometry provides a unified treatment employing double Diophantus equations. In this paper, we introduce supercove for the hexagonal- and rhombic-dodecahedral- grid-systems on a plane and in a space, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Her, I.: Geometric transformations on the hexagonal grid. IEEE Trans. Image Processing 4, 1213–1222 (1995)

    Article  Google Scholar 

  2. Liu, Y.-K.: The generation of straight lines on hexagonal grids. Computer Graphic Forum 12, 27–31 (1993)

    Article  Google Scholar 

  3. Stauton, R.C.: An analysis on hexagonal thinning algorithms and skeletal shape representation. Pattern Recognition 29, 1131–1146 (1996)

    Article  Google Scholar 

  4. Middleton, L., Sivaswamy, J.: Edge detection in a hexagonal-image processing framework. Image and Vision Computing 19, 1071–1081 (2001)

    Article  Google Scholar 

  5. McAndrew, A., Osborn, C.: The Euler characteristic on the face-centerd cubic lattice. Pattern Recognition Letters 18, 229–237 (1997)

    Article  Google Scholar 

  6. Saha, P.K., Rosenfeld, A.: Strongly normal set of convex polygons or polyhedra. Pattern Recognition Letters 19, 1119–1124 (1998)

    Article  MATH  Google Scholar 

  7. Schramm, J.M.: Coplanar tricubes. LNCS, vol. 1347, pp. 87–98. Springer, Heidelberg (1997)

    Google Scholar 

  8. Vittone, J., Chassery, J.M.: Digital naive planes understanding. In: Proceedings of SPIE, vol. 3811, pp. 22–32 (1999)

    Google Scholar 

  9. Reveilles, J.-P.: Combinatorial pieces in digital lines and planes. In: Proceedings of SPIE, vol. 2573, pp. 23–34 (1995)

    Google Scholar 

  10. Andres, E., Nehlig, P., Francon, J.: Supercover of straight lines, planes, and triangle. LNCS, vol. 1347, pp. 243–254. Springer, Heidelberg (1997)

    Google Scholar 

  11. Kimuro, K., Nagata, T.: Image processing on an omni-directional view using a hexagonal pyramid. In: Proc. of JAPAN-USA Symposium on Flexible Automation, vol. 2, pp. 1215–1218 (1992)

    Google Scholar 

  12. Benosman, R., Kang, S.-B. (eds.): Panoramic Vision, Sensor, Theory, and Applications. Springer, New York (2001)

    Google Scholar 

  13. Shar, K., White, D., Kimerling, A.J.: Geodesic discrete global grid systems. Cartography and Geographic Information Systems 30, 121–134 (2003)

    Article  Google Scholar 

  14. Randall, D.A., Ringler, T.D., Heikes, R.P., Jones, P., Baumgardner, J.: Climate modeling with spherical geodesic grids. IEEE, Computing in Science and Engineering 4, 32–41 (2002)

    Google Scholar 

  15. Morgan, F.: Riemannian Geometry: A beginner’s Guide. Jones and Bartlett Publishers, USA (1993)

    MATH  Google Scholar 

  16. Zdunkowski, W., Boot, A.: Dynamics of the Atmosphere. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  17. Stijnman, M.A., Bisseling, R.H., Barkema, G.T.: Partitioning 3D space for parallel many-particle simulations. Computer Physics Communications 149, 121–134 (2003)

    Article  MathSciNet  Google Scholar 

  18. Ibanez, L., Hamitouche, C., Roux, C.: Ray tracing and 3D object representation in the BCC and FCC grids. LNCS, vol. 1347, pp. 235–241. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Linh, T.K., Imiya, A., Strand, R., Borgefors, G. (2004). Supercover of Non-square and Non-cubic Grids. In: Klette, R., Žunić, J. (eds) Combinatorial Image Analysis. IWCIA 2004. Lecture Notes in Computer Science, vol 3322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30503-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30503-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23942-0

  • Online ISBN: 978-3-540-30503-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics