
Towards the Harmonisation of UML and SDL

Rüdiger Grammes and Reinhard Gotzhein

Department of Computer Science
University of Kaiserslautern

67653 Kaiserslautern, Germany
{grammes,gotzhein}@informatik.uni-kl.de

Abstract. UML and SDL are languages for the development of software
systems that have different origins, and have evolved separately for many
years. Recently, it can be observed that OMG and ITU, the standard-
isation bodies responsible for UML and SDL, respectively, are making
efforts to harmonise these languages. So far, harmonisation takes place
mainly on a conceptual level, by extending and aligning the set of lan-
guage concepts. In this paper, we argue that harmonisation of languages
can be approached both from a syntactic and semantic perspective. We
show how a common basis can be derived from the analysis of the UML
meta-model and the SDL abstract grammar. For this purpose, concep-
tually sound and well-founded mappings from meta-models to abstract
grammars and vice versa are defined and applied. The long term objec-
tive is the syntactic and semantic integration of UML and SDL. The key
to achieving this objective is a common language core, which can then
be extended in different ways to cover further, more specific language
concepts, and is sufficiently flexible to support future language add-ins.

1 Introduction

UML (Unified Modeling Language [1], [2]) is a graphical language for specifying,
modelling and documenting software systems with widespread use in industry,
standardised by the Object Management Group (OMG). It is a family of no-
tations (e.g., use case diagrams, class diagrams, sequence diagrams, statechart
diagrams, deployment diagrams) supporting different views of a system through-
out the software life cycle. Recently, the UML 2.0 standard was finalised. The
new standard is a major revision of UML 1.x, and introduces, amongst other
things, better support for system structure and components.

SDL (System Design Languages [3]) is a graphical specification language for
distributed systems and, in particular, communication systems, standardised by
the International Telecommunications Union (ITU). It is widely used in telecom-
munications industry. SDL is a sophisticated set of notations (e.g., MSC-2000,
SDL-2000, ASN.1, TTCN), supporting different system views on different levels
of abstraction.

With SDL-2000, several important steps towards its future harmonisation
with UML were made. For instance, classes and associations including aggrega-
tion, composition, and specialisation were added to the language. Furthermore,

D. de Frutos-Escrig and M. Núñez (Eds.): FORTE 2004, LNCS 3235, pp. 61–78, 2004.
c© IFIP International Federation for Information Processing 2004

62 Rüdiger Grammes and Reinhard Gotzhein

composite states that are similar to submachines in UML statecharts were incor-
porated. In turn, UML 2.0 introduced structured classes, which extend classes by
an internal structure consisting of nested structured classes, ports and connec-
tors. This makes it possible to model architectural aspects of systems in a fashion
similar to SDL.

First attempts to harmonise UML and SDL have already been made. The
Z.109 standard [4] defines a subset of UML 1.3 [2] that has a mapping to SDL-
2000. The UML subset is used in combination with SDL, with the semantics
based on SDL-2000. In [5], Selic and Rumbaugh define a transformation from
SDL-92 to UML 1.3 extended with the Rational Rose real-time profile.

Ultimately, these efforts are directed towards an integration of both languages
and the corresponding notations. However, at the time being, UML and SDL still
deviate in many ways, making it hard to see whether and when integration might
actually be achieved. Differences range from pure syntactic aspects to semantic
concepts, resulting from the origin of the languages. Also, it is not clear whether
different views of a system even if expressed in notations belonging to the same
family are consistent.

A true integration of both languages and the corresponding notations will
require a common syntactic and semantic core. This basis may then be extended
in different ways, yielding a variety of language profiles. This way, the system
developer will be enabled to model different parts of a system using different
notations, and to combine them into a single view.

In order to derive a common syntactic and semantic basis, the existing lan-
guage definitions of UML and SDL should be taken as a starting point. In this
paper, we present the results of analysing several corresponding excerpts of UML
and SDL, compare them, and derive a common subset. This is done on the syn-
tactical level, by defining conceptually sound and well-founded mappings from
meta-models (used to define the abstract syntax of UML, see Section 2) to ab-
stract grammars (used by SDL, see Section 2) and vice versa (Section 3), and
by extracting common production rules (Section 4). Results are discussed in
Section 5.

2 UML Meta-Model and SDL Abstract Grammar

The definition of a language consists of its syntax and semantics. The concrete
syntax of a language includes separators and other constructs needed for parsing
the language. The abstract syntax omits these details and contains only the
elements relevant for the definition of the semantics. Both the concrete and the
abstract syntax of a language can be defined in terms of a grammar, consisting
of a set of production rules that define the syntactically correct sentences.

For SDL, a concrete (textual and graphical) syntax and two abstract syn-
taxes, AS0 and AS1, are defined. The AS0 is obtained from the concrete syntax
by omitting details such as separators and lexical rules. Otherwise, is very simi-
lar to the concrete syntax of SDL. The abstract syntax AS1 is obtained from the
abstract syntax AS0 through a step of transformations followed by a mapping.

Towards the Harmonisation of UML and SDL 63

During the transformation, additional concepts are translated into core concepts
of SDL as described in the standard.

The abstract syntax of SDL is described in terms of an abstract grammar,
similar to BNF. It consists of two kinds of production rules, namely concatena-
tions and synonyms. A concatenation ’lhs ::=(::) rhs’ describes the non-terminal
lhs (left hand side) as a composite object consisting of the elements denoted by
rhs (right hand side). Optional elements are enclosed in square brackets, and
alternatives are separated by vertical bars. The suffix ’*’ describes a possibly
empty list of elements, ’+’ a non-empty list and ’-set’ a set of distinguishable
elements. A synonym ’lhs ::=(=) rhs’ describes that the non-terminal lhs is an
element of the kind rhs and can not be syntactically distinguished from other
elements of this kind.

For the mapping described in Section 3, we assume a normal form of the
abstract grammar, where concatenations have no alternatives on the right hand
side. The SDL abstract grammar can be easily transformed into this normal
form by introducing new synonyms for these alternatives.

Below an excerpt of the AS1, the production rule State-node, is shown. State
nodes are composite objects consisting of a state name, a save signalset, and sets
of input nodes, spontaneous transitions, continuous signals and connect nodes.
Optionally, a state node can have a composite state type identifier (in that case,
the state represents a composite state of the respective type).

State-node ::=(::) State-name
[On-exception]
Save-signalset
Input-node-set
Spontaneous-transition-set
Continuous-signal-set
Connect-node-set
[Composite-state-type-identifier]

A meta-model is a model used to define a language for the specification of
models. In UML, this meta-model approach is used to define the language syntax.
In particular, the abstract syntax of the language is defined using UML class
diagrams. This approach is reflective, since class diagrams are UML models, and
therefore described in terms of themselves. On top of the model and the meta-
model, more layers can exist (meta-meta-models, etc.). UML uses a four layer
meta-model structure: user objects (M0), model (M1), meta-model (M2) and
meta-meta-model (M3). Every element in a layer is an instance of an element of
the direct superordinate layer.

The UML class diagrams used for the description of the abstract syntax
comprise packages, classes, attributes, associations and specialisation. Classes in
the UML meta-model describe language elements. An occurrence of the language
element in the model (M1) is an instance of the meta-model class. Classes in the
meta-model can be parameterised by attributes. Attributes describe properties
of the language element described by a class. Composition between meta-model
classes describes that a language element contains another. General associations

64 Rüdiger Grammes and Reinhard Gotzhein

relate language elements with each other, e.g., a transition with a trigger. The
meta-model uses packages, abstract classes and specialisation to structure the
abstract syntax.

3 Defining Mappings Between UML Meta-Model
and SDL Abstract Grammar

In this section, we define precise, conceptually sound mappings from meta-
models to abstract grammars, and vice versa. The examples for the reverse
mapping can be found in [6]. As it turns out, not every element of the UML
meta-model can be mapped. Also, several meta-model elements may have the
same representation in the abstract grammar. Therefore, the mapping is not
completely reversible. However, it is possible to map every element of an ab-
stract grammar to a meta-model representation. In Section 4, these mappings
will be applied to UML and SDL to extract a common syntactical basis.

3.1 Classes and Enumerations

map(MM): A concrete class of the meta-model represents a language element
of the model. E.g., the meta-model class State represents all state descriptions in
a UML statemachine. In an abstract grammar, a language element is represented
by a specific production rule, namely a concatenation. Therefore, a concrete
class in the meta-model is mapped to a concatenation of the abstract grammar.
The name of the non-terminal is derived from the class name and the package
structure of the meta-model (see below). The right hand side of the concatenation
is derived from the class definition (attributes) and context (associations) as
defined below (see 3.2, 3.3).

An abstract class of the meta-model describes properties that are common
to its subclasses. E.g., the meta-model class Vertex describes properties that are
common to states and pseudo-states (initial states, . . .). Since an abstract class
can not be instantiated, it does not represent a language element of the model.
Therefore, no concatenation is used in the mapping. Instead, we have decided
to map an abstract class of the meta-model to another kind of production rule,
namely a synonym, of the abstract grammar. In an abstract grammar, a synonym
replaces the element on its left hand side with an element of the right hand side.
This is a similar to abstract classes in the meta-model, which must be replaced
by one of their concrete subclasses in a model. The name of the non-terminal is
selected as in the case of a concrete class. The right hand side is derived from
the context (specialisation) as described below (see 3.5).

An enumeration in the meta-model is a set of values used to parameterise
meta-model classes. E.g., the meta-model class Pseudostate describes different
language elements (entry point, exit point, . . .) of the model depending on the
value of the attribute ’kind’ of the enumeration type PseudostateKind. Enumer-
ations do not directly describe language elements of the model. Therefore, as in
the case of abstract classes, no concatenation is used in the mapping. Instead,

Towards the Harmonisation of UML and SDL 65

MM map(MM)

<<enumeration>>
TransitionKind

internal
local
external StateMachine

Vertex

BehSM_StateMachine ::=(::)

BehSM_Vertex ::=(=)

BehSM_TransitionKind ::=(=)

enumerations are also mapped to synonyms of the abstract grammar. This pro-
duction rule replaces the enumeration by one of its values.

The name of the non-terminals introduced by the mappings described above
is the qualified name of the class or enumeration. The qualified name is a se-
quence of the packages the class or enumeration is contained in (from outermost
to innermost) and the name of the class or enumeration, each separated by un-
derscores. E.g., Kernel Element is the name of the non-terminal introduced by
the class Element in the package Kernel. The qualified name is used in order to
avoid name clashes between equally named classes in different packages.

Example: The following example comes from the meta-model of UML state
machines. It describes two classes, an abstract class Vertex and a concrete class
StateMachine. Furthermore, there is an enumeration TransitionKind. All of these
elements are contained in the package BehaviorStatemachines (not shown), that
we will shortly refer to as BehSM.

StateMachine is a concrete class, and is therefore mapped to a concatenation.
The name BehSM StateMachine comes from the package structure and the name
of the class. The abstract class Vertex and the enumeration TransitionKind are
mapped to synonyms.

map(AG): As mentioned in the mapping from meta-models to abstract gram-
mars, concrete classes and concatenations both represent language elements of
the model. Therefore, concatenations of the abstract grammar are mapped to
concrete classes in the meta-model. The name of the concrete class is derived
from the production rule (see below).

A synonym of the abstract grammar represents a language element that does
not appear in the model, but stands for other language elements. E.g., a Data-
type-definition in the SDL abstract grammar is a synonym for a Value-data-
type-definition, an Object-data-type-definition or an Interface-definition. This is
a similar concept to abstract classes in the meta-model, which we have mapped to
synonyms in the abstract grammar. However, it is also similar to an enumeration,
where the enumeration stands for one of its values. Therefore, we map a synonym
in the abstract grammar either to an abstract class or an enumeration. The exact
mapping depends on the right hand side of the synonym (see 3.2, 3.3). The name

66 Rüdiger Grammes and Reinhard Gotzhein

MM map(MM)

<<enumeration>>
TransitionKind

internal
local
external

Transition

kind: TransitionKind

BehSM_TransitionKind ::=(=)
 INTERNAL
 | LOCAL
 | EXTERNAL

BehSM_Transition ::=(::)
 BehSM_TransitionKind /* kind */

of the class or enumeration is the name of the non-terminal on the left hand side
of the production rule.

3.2 Attributes

map(MM): In the meta-model, attributes of a class represent properties of
a language element of the model. E.g., the attribute ’kind’ of the meta-model
class Transition describes if the transition is internal, local or external. In an ab-
stract syntax tree, an attribute is represented as a sub-node of the non-terminal
and corresponds to a class. We have mapped concrete classes to concatenations
of the abstract grammar. Therefore, an attribute of a concrete class is mapped
to a terminal on the right hand side of the concatenation. We map attributes to
terminals since they do not need to be refined any further. The only exception is
an enumeration type; in that case we map the attribute to a non-terminal, since
we have mapped enumerations to synonyms and non-terminals. The name of the
terminal is the name of the type (e.g. Boolean). The name of the non-terminal is
derived from the name of the enumeration and the package structure, as defined
in 3.1.

Attributes that are marked as derived carry no additional information and
can be omitted. E.g., the attribute ’isComposite’ of State can be derived from
the number of associated regions. If they are not omitted, additional static condi-
tions are needed to define the dependencies between the original and the derived
attributes. Default values of attributes can not be mapped to the abstract gram-
mar. They can be described by static conditions.

Elements of an enumeration represent values of the enumeration type. A value
in an abstract grammar is represented by a terminal. Therefore, enumeration
elements are mapped to terminals of the abstract grammar. The name of the
terminal is the name of the enumeration element. An enumeration is mapped
to a synonym of the abstract grammar. Therefore, we map the terminals to the
right hand side of the synonym corresponding to the enumeration.

Example: The following example (again from BehaviorStatemachines) contains
a concrete class Transition and the enumeration TransitionKind. The classes are
mapped as described in the previous section. The attribute ’kind’ of Transition
is an element on the right hand side of BehSM Transition. In this special case

Towards the Harmonisation of UML and SDL 67

(’kind’ is an enumeration), it is a non-terminal that refers to the mapping of the
enumeration TransitionKind. The name of the attribute is appended as a com-
ment. The enumeration literals of TransitionKind appear as an alternative of
terminals on the right hand side of the production rule, written in all caps for
better distinction.

map(AG): A terminal on the right hand side of a concatenation represents
a property of the language element. In the meta-model, an attribute represents
a property of a language element. The terminal is therefore mapped to an at-
tribute of the concrete class corresponding to the concatenation. The type of the
attribute is the name of the terminal. The name of the terminal can be chosen
arbitrarily as long as it does not conflict with other attribute names of the class.

A synonym with only terminals on the right hand side represents an enumer-
ation of values. E.g., the synonym Agent-kind of the SDL abstract grammar is
an enumeration of the values SYSTEM, BLOCK and PROCESS. Therefore, the
terminals are mapped to enumeration values of the enumeration corresponding
to the synonym.

3.3 Associations

map(MM): An aggregation or composition between two classes means that
one language element contains or is made up of other language elements. E.g.,
a Region in a statechart contains vertices and transitions. In the same way, a node
in an abstract syntax tree can have sub-nodes. E.g., a State-transition-graph of
the SDL abstract grammar has a set of State-nodes as sub-nodes. Therefore, we
map aggregation and composition to the abstract grammar so that the definition
of the aggregated class is a sub-node of the aggregating class. This is achieved
by adding the non-terminal corresponding to the aggregated class on the right
hand side of the concatenation corresponding to the aggregating concrete class.

A general association between two classes is an association between language
elements, in which the elements play a certain role. E.g., a State is associated
with a number of triggers, the triggers playing the role of deferrable triggers.
In the SDL abstract grammar, two language elements are associated by identi-
fiers. E.g., an Input-node is associated with a Signal by a Signal-identifier on the
right hand side of the concatenation corresponding to the Input-node. Therefore,
a directed general association is mapped to an identifier on the right hand side
of the concatenation corresponding to the concrete class the association origi-
nates from. An undirected general association is split into two directed general
associations.

An associations with the union property is the union of the associations that
subset it. This is expressed by the property subsets. As in the case of derived
attributes, associations with the union property are not mapped to the abstract
grammar.

68 Rüdiger Grammes and Reinhard Gotzhein

MM map(MM)

Transition

kind: TransitionKind

Vertex

+outgoing +incoming

+source +target

Region

+subvertex
{subsets ownedElement}

BehSM_Region ::=(::)
 BehSM_Vertex /* subvertex */

BehSM_Vertex ::=(=)

BehSM_Transition ::=(::)
 BehSM_TransitionKind /* kind */
 BehSM_Vertex-Identifier
 /* source */
 BehSM_Vertex-Identifier
 /* target */

BehSM_Vertex-Identifier ::=(=)
 Identifier

Example: The following example shows the abstract class Vertex and the con-
crete classes Transition and Region. Region is composed of a Vertex called sub-
vertex. This composition is a subset of the association ’ownedElement’ between
two Elements. In the AST, BehSM Region thus has BehSM Vertex on the right
hand side, with the name appended as a comment. Between Vertex and Transi-
tion there are two bidirectional associations, which are split into two unidirec-
tional associations respectively. Attributes and associations of an abstract class
are not mapped to the corresponding synonym in the AST, since an abstract
class is not a synonym for one of its attributes or associations. Instead, they
are copied into the respective subclasses, as described in Section 3.5. In this
example, Vertex has no subclasses. Therefore, we only have to map the two
general associations ’source’ and ’target’. To distinguish between general asso-
ciation and composition, an association is mapped to an identifier (in this case,
BehSM Vertex-Identifier) on the right hand side of the corresponding production
rule. How the identifier looks like is not further specified. It could be a qualified
name like in the case of SDL.

map(AG): Non-terminals on the right hand side of a concatenation can stand
for an enumeration or a class in the meta-model. In case they represent an enu-
meration they represent an attribute of the class (see 3.2). In case they represent
a class, this class is a sub-node of the class corresponding to the concatenation.
This is similar to a class in the meta-model that is composed of other classes.
Therefore, in this case we map a non-terminal on the right hand side of a con-
catenation to a composition in the meta-model. The composing class is the class
corresponding to the concatenation; the composed class is the class correspond-
ing to the non-terminal on the right hand side. The role of the classes can be
chosen arbitrarily.

Towards the Harmonisation of UML and SDL 69

Table 1. Mapping of Multiplicities

MM AG

0..1 [Name]

0..n, 1 < n (as 0..*)

0..* Name *

0..* {unique} Name-set

1 Name

1..n, 1 < n (as 1..*)

1..* Name +

1..* {unique} (as 0..* {unique})
n (as 0..*)

n..m, 1 < n < m (as 1..*)

n..*, 1 < n (as 1..*)

An identifier on the right hand side of a concatenation identifies a language
element that is associated with the language element described by the concate-
nation. E.g., in the SDL abstract grammar, an Input-node is associated with
a Signal by a Signal-identifier. Therefore, we map an identifier on the right hand
side of a concatenation to a directed general association in the meta-model. The
source of the association is the concrete class corresponding to the concatenation,
according to the mapping in 3.1. The target is the concrete class corresponding
to the language element referenced by the identifier. The role of the classes can
be chosen arbitrarily.

3.4 Multiplicity

The following table defines a mapping between multiplicities in the meta-model
and the abstract grammar. In UML, multiplicities consist of a lower bound and
an optional upper bound, which can be infinite. The property ordered expresses
that there is a linear order for the elements. The property unique expresses
that no element appears more than once. In the abstract grammar, an optional
element is enclosed by square brackets. A possibly empty list of elements is
marked by a ’*’ behind the element, a non empty list by a ’+’. A set of distinct
elements is marked by the suffix ’-set’.

Table 1 shows the mapping of multiplicities between meta-model and abstract
grammar. If we use lists in the abstract grammar, the elements are ordered and
not necessarily unique. If we use sets, they are not ordered and unique. Therefore,
we can only map one of the properties to the abstract grammar. In this case,
the property ordered is omitted from the mapping.

3.5 Specialisation

In the UML meta-model, abstract classes and specialisation are used frequently
to capture common aspects of different classes, and as part of a meta-language

70 Rüdiger Grammes and Reinhard Gotzhein

core reused in several standards (see UML: Infrastructure [1]). For the abstract
syntax, abstract classes are not directly interesting, since they can not be instan-
tiated and therefore do not appear in a model, except through their subclasses.
Nonetheless we map them to the abstract grammar, to preserve as much of the
structure of the meta-model as possible.

map(MM): We have to map specialisation to the abstract grammar, and the
fact that a specializing class inherits properties of the specialised class. The
easiest way to do this is to copy these properties into the specializing classes
before the mapping. This has the advantage that redefinition of properties is
easy to realise. They are not copied to subclasses that overwrite them.

This is done as follows:

1. For every class that has subclasses, copy all attributes of the class and all
associations that originate from this class to each of its direct subclasses.
(a) An attribute is only copied to a subclass if no attribute of the same name

already exists, i.e., if the attributed is not redefined.
(b) An association is only copied to a subclass if it is not redefined in the

subclass.
2. Repeat step 1 for all subclasses that have new attributes and associations

after the last execution of step 1.

In the meta-model, an abstract class can take part in an association. In the
model, an instance of a concrete class that specialises the abstract class takes
part in the association instead. E.g., a Vertex is associated with Transitions as
the source of these transitions. In the model, the source of these transitions is
either a State or a Pseudostate. In the abstract grammar, we can express this
using a synonym. We have already mapped an abstract class to a non-terminal
and a synonym (see 3.1). To map the specialisation to the abstract grammar,
we add the non-terminals corresponding to the direct sub-classes of the abstract
class to the right hand side of the synonym. This means that every occurrence
of the non-terminal (the abstract class) is replaced by a non-terminal (one of the
subclasses) in the abstract syntax tree.

To map specialisation to the abstract grammar, we need synonyms. On the
other hand, a concrete class can have subclasses, but is mapped to a concatena-
tion (see 3.1). In this case, we transform the meta-model before we perform the
mapping. The concrete class with subclasses is replaced by an abstract class of
the same name. The concrete class is renamed, e.g. by adding a special prefix,
and added as a subclass of the new abstract class. The subclasses of the con-
crete class are now subclasses of the new abstract class and the mapping can be
performed. However, we still have to copy the attributes of the concrete class to
its former subclasses, as described above.

Example: The following example is taken from the package Kernel and cov-
ers classifiers, classes and associations. Classifier is an abstract class with the

Towards the Harmonisation of UML and SDL 71

MM map(MM)

Classifier

isAbstract: Boolean = false

Kernel

+general *

Class

+superClass
*{redefines general}

Association

+nested
Classifier*

Kernel_Classifier ::=(=)
 Kernel_Class
 | Kernel_Association

Kernel_Class ::=(::)
 Boolean /*isAbstract*/
 Kernel_Class-Identifier-set /*superClass*/
 Kernel_Classifier-set /* nestedClassifier */

Kernel_Association ::=(::)
 Boolean /*isAbstract*/
 Kernel_Classifier-Identifier-set /*general*/

Kernel_Class-Identifier ::=(=) Identifier

Kernel_Classifier-Identifier ::=(=) Identifier

attribute ’isAbstract’. A classifier can be generalised by another classifier, de-
scribed by the association named ’general’. Concrete subclasses of Classifier are
Class and Association. The association ’superClass’ between two classes redefines
the association ’general’.

Before mapping to the abstract grammar, we have to copy the attributes
and associations of the abstract class Classifier to its subclasses. The attribute
’isAbstract’ is copied to the classes Class and Association, since no attribute of
the same name exists. A new association ’general’ from Association to Classi-
fier is added. The association ’superClass’ redefines ’general’, therefore no new
association is added to Class.

The abstract class Classifier is mapped to a synonym. Class and Association
are direct subclasses of Classifier ; therefore, we add the non-terminals corre-
sponding to these classes on the right hand side of the synonym.

map(AG): Non-terminals of the abstract grammar represent language ele-
ments. A synonym of the abstract grammar with non-terminals on the right hand
side replaces a language element by another. E.g., a Return-node in the abstract
grammar of SDL is replaced by an Action-return-node, a Value-return-node or
a Named-return-node. We map synonyms to abstract classes in the meta-model.
Abstract classes can not be instantiated, but can have instances through their
subclasses. Therefore, we map a synonym with non-terminals on the right hand
side in the abstract grammar to a specialisation relationship. The specialised
class is the class corresponding to the non-terminal on the left hand side. The
specialising classes are the classes corresponding to the non-terminals on the
right hand side.

72 Rüdiger Grammes and Reinhard Gotzhein

3.6 Meta-Model Approach vs. Abstract Grammar Approach

From the discussion so far, it is quite obvious that the meta-model approach to
defining an abstract syntax is more expressive than the (context free) grammar
approach. As a consequence, the mapping from the SDL abstract grammar to
a meta-model is completely reversible. However, this is not the case for the
mapping from the UML meta-model to an abstract grammar. Several elements
of the UML meta-model can not be expressed in the abstract grammar. They are
described in [6]. In consequence, the meta-model approach seems to be preferable
as a basis for the harmonisation of UML and SDL. It covers and extends the
expressiveness of abstract grammars, and thus seems to be the right choice.
However, when it comes to implementing a language by providing tool support,
an abstract grammar is still needed. With the mapping defined above, such an
abstract grammar can be systematically derived.

4 Extracting a Common Abstract Syntax
from SDL and UML

Translating the meta-model of UML 2.0 into an abstract grammar supports the
comparison of the abstract syntax of UML 2.0 and SDL-2000. In particular,
it enables us to examine how the common constructs of SDL and UML are
reflected in common parts of the abstract syntax of both languages, and to
extract a common abstract grammar.

As it has turned out, some information of the meta-model is lost when it
is mapped to an abstract grammar (see Section 3.6). However, the information
lost is not important for the extraction, because it is not present in the abstract
syntax of SDL.

Instead of mapping the UML meta-model to an abstract grammar, we could
apply the mapping from the SDL abstract grammar to a meta-model. This way,
no information would be lost, as the meta-model is more expressive. However, the
extraction process would not benefit from this choice. Even worse, the extraction
would be harder, since the UML meta-model defines a large number of abstract
classes with attributes and associations, which would not show up in the SDL
meta-model. It would be necessary to either copy the attributes of abstract
classes to their subclasses in the UML meta-model (as described in Section 3.5),
or to identify common attributes and associations, and shift them to super-
classes in the SDL meta-model.

To relate language elements of SDL-2000 and UML 2.0 on a syntactical level,
substantial knowledge of both languages is required. In particular, it is necessary
to take the semantics of language elements into account. E.g., we need knowl-
edge of the semantics of the language elements to relate the Package-name of
a Package-definition in the abstract syntax of SDL with the String of a struc-
tured class in the abstract syntax of UML. Also, it can be expected that for
some of the common constructs the abstract syntax will be different, although
the semantic is the same. In some cases, there might even be a common abstract
syntax, although the semantics is different.

Towards the Harmonisation of UML and SDL 73

To extract the common abstract syntax of the two languages, we take the
production rules for language elements that are similar in UML and SDL, e.g.
packages, as a starting point, and compare their right hand sides. For correspond-
ing elements in both sets of production rules that represent similar concepts, the
production rules for these elements are compared. If they overlap, we can relate
the two elements with each other and include them in the common abstract
syntax. We start the extraction with very high level language elements, namely
packages and agents/classes, before moving to language elements with a finer
granularity.

4.1 Packages

Both SDL and UML have a concept of packages for grouping and reuse of el-
ements of the specification. Both support the nesting of packages (2). The ab-
stract syntax of UML describes the contents of a package as a set of Pack-
ageableElements, a synonym for all elements that can be contained in a pack-
age. SDL describes sets of the elements that can be contained in a package,
e.g. Signal-definition-set. Common packageable elements in SDL and UML are
agents/classes (3), signals (4) and composite states/statemachines (5).

SDL-2000 (AS1) Common AS UML 2.0 (derived AS)
Package-definition ::=(::) Package-definition ::=(::) Kernel Package ::=(::)
1 Package-name 1 Package-name 1 [String]
2 Package-definition-set 2 Package-definition-set 2 Kernel Package-set

Data-type-definition-set 3 Signal-definition-set Kernel PackageableElement-set
Syntype-definition-set 4 Agent-type-definition-set Kernel PackageMerge-set

3 Signal-definition-set 5 Statemachine-set Kernel ElementImport-set
Exception-definition-set Kernel PackageImport-set

4 Agent-type-definition-set Kernel PackageableElement ::=(=)
5 Composite-state-type- 4 StructuredClasses Class

definition-set 5 BehStateMachines StateMachine
Procedure-definition-set 3 Communications Signal

4.2 Signals

Signal types exist in SDL and UML to describe communication between agents/
objects. Signals have a name (1) and parameters, which are represented by sorts
in SDL and properties in UML. While representing similar concepts, the abstract
syntax of sorts and properties are different, therefore signals in the common
abstract grammar have no parameters.

74 Rüdiger Grammes and Reinhard Gotzhein

SDL-2000 (AS1) Common AS UML 2.0 (derived AS)
Signal-definition ::=(::) Signal-definition ::=(::) Communications Signal ::=(::)
1 Signal-name 1 Signal-name Kernel Property *

Sort-reference-identifier * 1 [String]
. . .

4.3 Agent-type/Class

UML 2.0 introduces structured classes, which are classes extended with internal
structure and ports. Structured classes are semantically and syntactically similar
to Agent-types in SDL. Both have an internal structure of properties (respec-
tively agents, 9), connectors (channels, 7) and gates (ports, 6). Both agent-types
and structured classes can specialise other agent-types and structured classes
(2), however SDL only supports single inheritance while UML supports multiple
inheritance. Behaviour is associated with an Agent-type as a State-machine-
definition, which consists of a name and a Composite-state-type-identifier (8).
Behaviour is associated with structured classes by a Behavior-Identifier (8). Be-
haviour in the abstract syntax of UML is a synonym for statemachines and
other behaviour models. Statemachines are syntactically similar to composite-
state-types in SDL. The abstract syntax of the two languages differs slightly,
since UML does not have a State-machine-definition. In the common abstract
grammar, we include the State-machine-definition but discard the name associ-
ated with it, since it does not exist in UML.

SDL-2000 (AS1) Common AS UML 2.0 (derived AS)
Agent-type-definition ::=(::) Agent-type-definition ::=(::) StructuredClasses Class ::=(::)
1 Agent-type-name 1 Agent-type-name 1 [String]

Agent-kind 2 [Agent-type-identifier] . . .
2 [Agent-type-identifier] 3 Signal-definition-set Kernel Classifier-Identifier-set

Agent-formal-parameter * 4 Agent-type-definition-set 2 StructClasses Class-Identifier-set
Data-type-definition-set 5 Statemachine-set [Kernel Type]
Syntype-definition-set 9 Agent-definition-set Kernel ElementImport-set

3 Signal-definition-set 6 Port-definition-set Kernel PackageImport-set
Timer-definition-set 7 Channel-definition-set Kernel Constraint-set
Exception-definition-set 8 [Agent-behaviour] Kernel Behavior-set
Variable-definition-set 8 [Kernel Behavior-Identifier]

4 Agent-type-definition-set Agent-behaviour ::=(::) Boolean /*isActive*/
5 Composite-state-type- 8 Statemachine-identifier Communications Reception-set

definition-set 6 Ports Port-set
Procedure-definition-set 7 CompStruct Connector-set

9 Agent-definition-set 9 IntStruct Property-set
6 Gate-definition-set Kernel Property *
7 Channel-definition-set Kernel Classifier-set
8 [State-machine-definition

]
Kernel Operation *

State-machine-definition ::=(::) Kernel Classifier ::=(=)
State-name 4 StructuredClasses Class

8 Composite-state-type- 5 BehStateMachines StateMachine
identifier 3 Communications Signal

. . .

Towards the Harmonisation of UML and SDL 75

4.4 Channel/Connector

Channels/connectors connect gates/ports. In SDL, a channel has one or two
channel-paths. In case of two channel-paths, the channel is bi-directional and the
originating gate of the first path is the destination gate of the second path and
vice versa. In UML, the connector connects two or more ports. In the common
AS, a channel is a set of channel-ends (2), which is a pair of ports (3). No
direction is specified.

SDL-2000 (AS1) Common AS UML 2.0 (derived AS)
Channel-definition ::=(::) Channel-definition ::=(::) IntStruct Connector ::=(::)
1 Channel-name 1 Channel-name IntStruct Connector-Identifier

[NODELAY] 2 Channel-end-set 2 Ports ConnectorEnd * /* 2..* */
2 Channel-path-set [Kernel Association-Identifier]

Channel-end ::=(::) . . .
Channel-path ::=(::) 3 Port-identifier 1 [String]
3 Originating-gate 3 Port-identifier [Kernel Type]
3 Destination-gate Ports ConnectorEnd ::=(::)

Signal-identifier-set 3 [IntStruct ConnectableElement-
Identifier]

4.5 Gate/Port

Gates/ports are endpoints for channels/connectors. Gates specify valid signals
for both directions, while ports have required and provided interfaces (2, 3).

SDL-2000 (AS1) Common AS UML 2.0 (derived AS)
Gate-definition ::=(::) Port-definition ::=(::) Ports Port ::=(::)
1 Gate-name 1 Port-name 3 Interfaces Interface-Identifier-

set
2 In-signal-identifier-set 2 Signal-identifier-set 2 Interfaces Interface-Identifier-

set
3 Out-signal-identifier-set 3 Signal-identifier-set Ports Port-Identifier-set

IntStruct ConnectorEnd-set
1 [String]

. . .

4.6 Composite-state-type/Statemachine

Composite-state-types as well as statemachines have a name (1), a sequence of
parameters (3) and an identifier of the composite-state-type/statemachine that
they specialise (2), if any. In UML, a statemachine has one or more regions
that contain states and transitions. The equivalent in SDL is a Composite-
state-graph (one region) or a State-aggregation-graph (two or more regions).

76 Rüdiger Grammes and Reinhard Gotzhein

A Composite-state-graph contains a State-transition-graph which contains the
states of the Composite-state-type. A Region in UML maps to a State-transition-
graph in SDL. Both contain the states (5) and transitions of the composite-
state-type/statemachine. Multiple regions are not included in the common AS,
because of the different syntax and semantics in SDL and UML. The common
AS for Statemachines can be found in [6].

4.7 Agent/Property

Agents and properties are both instances of a type (2) (agent-type in SDL,
structured class in UML). Both specify upper and lower bounds for the number
of instances (3). While the lower bound in UML is optional, it is required in
SDL.

SDL-2000 (AS1) Common AS UML 2.0 (derived AS)
Agent-definition ::=(::) Agent-definition ::=(::) IntStruct Property ::=(::)
1 Agent-name 1 Agent-name Kernel AggregationKind

Number-of-instances 2 [Agent-type-identifier] Kernel Property* /*subset*/
2 Agent-type-identifier Number-of-instances Kernel Property* /*refined*/

[Kernel ValueSpecification]
Number-of-instances ::=(::) Number-of-instances ::=(::) [Kernel Association-Identifier]
3 Initial-number 3 [Initial-number] 1 [String]
3 [Maximum-number] 3 [Maximum-number] 2 [Kernel Type-Identifier]

3 [Kernel ValueSpecification]
Initial-number ::=(=) Nat Initial-number ::=(=) Nat 3 [Kernel ValueSpecification]
Maximum-number ::=(=) Maximum-number ::=(=) 3 . . .

Nat Nat

4.8 State-node/State

State-nodes in SDL are similar to states in UML, however the syntax is different.
Both have a name (1) and an identifier of the composite-state-type/statemachine
that is the submachine of this state (2), if any. States are the source of transitions,
but in SDL these transitions are associated with the trigger of the transition
(Input-node) and in UML with the state itself. The common AS for States can
be found in [6].

5 Conclusions and Outlook

With regard to recent language developments, harmonisation and finally integra-
tion of languages are becoming urgent topics. With more notations being used
during the development of a given system, the question whether these views are
consistent is gaining importance. Also, in the context of large systems, the use
of a mix of notations is getting more likely. Standardisation work to harmonise

Towards the Harmonisation of UML and SDL 77

UML and SDL is an important effort towards the objective of having a set of
languages that can be used together.

In this paper, we have argued that the harmonisation of languages requires
a common syntactic and semantic basis. Following this line, we have first de-
fined conceptually sound and well-founded mappings from meta-models – used
to define the abstract syntax of UML – to abstract grammars – used by SDL –,
and vice versa. By applying these mappings, we have then extracted common
production rules, arriving at a common abstract grammar for several language
constructs. While the results were encouraging for structural language elements,
it turned out that the coverage was below expectations for behavioural con-
structs. From this experience, we have drawn the conclusion that an extraction
on a purely syntactical basis is not sufficient.

In [6], we have therefore compared language elements on a semantic basis.
For this comparison, we chose UML statecharts and SDL process graphs, respec-
tively. UML statecharts have a complete semantics with few variation points.
Several attempts to formally define the behaviour of statecharts exist, e.g. [7].
The syntactic comparison of UML and SDL revealed that the abstract syntax
of statecharts and process graphs is very different. However, there are several
language elements in both languages that have a similar notation and represent
similar concepts, despite major syntactic differences. The semantic comparison
showed that there is indeed potential for the harmonisation of UML and SDL.
However, it also revealed that without a common formal basis, the results that
can be obtained are of limited value.

We finally conclude that future work should be directed towards a common
semantic core for UML and SDL, with the intention of having extensions of this
core to cover further, language specific concepts. Both languages are complex
and sophisticated, so this will definitely not be a simple task. However, our
experience with the definition of the SDL formal semantics [8] has shown that
this kind of work provides valuable feedback to the language designers, finally
leading to an even better language.

In a related work, Fischer et al [9] describe a way to generate meta-models
from BNF grammars and demonstrate their approach for the abstract syntax
of SDL-2000. To capitalise on the advantages of meta-models, they introduce
abstract concept definitions and transform generated concrete elements to spe-
cialisations of abstract elements.

References

[1] OMG Unified Modelling Language Specification: Version 2.0 (2003) 61, 70
[2] OMG Unified Modelling Language Specification: Version 1.3 (1999) 61, 62
[3] ITU Recommendation Z.100: Specification and Description Language. Geneva

(1999) 61
[4] ITU Recommendation Z.109: SDL combined with UML. Geneva (2000) 62
[5] Selic, B., Rumbaugh, J.: Mapping SDL to UML. Rational Software Whitepaper.

(1999) 62

78 Rüdiger Grammes and Reinhard Gotzhein

[6] Grammes, R., Gotzhein, R.: Towards the Harmonisation of UML and SDL - Syn-
tactic and Semantic Alignment -. Technical Report 327/03, Technical University
of Kaiserslautern (2003) 64, 72, 76, 77

[7] Börger, E., Cavarra, A., Riccobene, E.: Modeling the dynamics of UML State
Machines. In Gurevich, Y., Kutter, P., Odersky, M., Thiele, L., eds.: Abstract
State Machines. Theory and Applications, Springer-Verlag (2000) pp. 223–241
77

[8] Glässer, U., Gotzhein, R., Prinz, A.: The Formal Semantics of SDL-2000 - Status
and Perspectives. Computer Networks 42 (2003) pp. 343–358 77

[9] Fischer, J., Piefel, M., Scheidgen, M.: A Metamodel for SDL-2000 in the Context
of Metamodelling ULF. In: SAM’04. (2004) 77

	Towards the Harmonisation of UML and SDL

