Skip to main content

Separable Concave Optimization Approximately Equals Piecewise Linear Optimization

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3064))

Abstract

We show how to approximate a separable concave minimization problem over a general closed ground set by a single piecewise linear minimization problem. The approximation is to arbitrary 1+ε precision in optimal cost. For polyhedral ground sets in \(\mathbb{R}^n_+\) and nondecreasing cost functions, the number of pieces is polynomial in the input size and proportional to 1/log(1+ε). For general polyhedra, the number of pieces is polynomial in the input size and the size of the zeroes of the concave objective components.

We illustrate our approach on the concave-cost uncapacitated multicommodity flow problem. By formulating the resulting piecewise linear approximation problem as a fixed charge, mixed integer model and using a dual ascent solution procedure, we solve randomly generated instances to within five to twenty percent of guaranteed optimality. The problem instances contain up to 50 nodes, 500 edges, 1,225 commodities, and 1,250,000 flow variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nemhauser, G., Wolsey, L.: Integer and combinatorial optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York (1999); Reprint of the 1988 original, A Wiley-Interscience Publication

    MATH  Google Scholar 

  2. Meyerson, A., Munagala, K., Plotkin, S.: Cost-distance: two metric network design. In: 41st Annual Symposium on Foundations of Computer Science, Redondo Beach, CA, pp. 624–630. IEEE Comput. Soc. Press, Los Alamitos (2000)

    Chapter  Google Scholar 

  3. Munagala, K.: Approximation algorithms for concave cost network flow problems. PhD thesis, Stanford University, Department of Computer Science (2003)

    Google Scholar 

  4. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows, Theory, algorithms, and applications. Prentice Hall Inc., Englewood Cliffs (1993)

    Google Scholar 

  5. Hochbaum, D.S., Shanthikumar, J.G.: Convex separable optimization is not much harder than linear optimization. J. Assoc. Comput. Mach. 37, 843–862 (1990)

    MATH  MathSciNet  Google Scholar 

  6. Balakrishnan, A., Magnanti, T.L., Wong, R.T.: A dual-ascent procedure for largescale uncapacitated network design. Oper. Res. 37, 716–740 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Korte, B., Vygen, J.: Combinatorial optimization Theory and algorithms, 2nd edn. Algorithms and Combinatorics, vol. 21. Springer, Berlin (2002)

    MATH  Google Scholar 

  8. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization, 2nd edn. Algorithms and Combinatorics, vol. 2. Springer, Berlin (1993)

    MATH  Google Scholar 

  9. Bauer, H.: Minimalstellen von Funktionen und Extremalpunkte. Arch. Math. 9, 389–393 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  10. Croxton, K.L., Gendron, B., Magnanti, T.L.: A comparison of mixed-integer programming models for nonconvex piecewise linear cost minimization problems. Management Science 49, 1268–1273 (2003)

    Article  Google Scholar 

  11. Guisewite, G.M., Pardalos, P.M.: Minimum concave-cost network flow problems: applications, complexity, and algorithms. Ann. Oper. Res. 25, 75–99 (1990), Computational methods in global optimization

    Article  MATH  MathSciNet  Google Scholar 

  12. Ball, M.O., Magnanti, T.L., Monma, C.L. (eds.): Network models. Handbooks in Operations Research and Management Science, vol. 7. North-Holland Publishing Co., Amsterdam (1995)

    MATH  Google Scholar 

  13. Balakrishnan, A., Magnanti, T.L., Mirchandani, P.: Network design. In: Dell’Amico, M., Maffioli, F. (eds.) Annotated bibliographies in combinatorial optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization, pp. 311–334. John Wiley & Sons Ltd., Chichester (1997), A Wiley-Interscience Publication

    Google Scholar 

  14. Goemans, M., Williamson, D.: The primal-dual method for approximation algorithms and its application to network design problems. In: Hochbaum, D.S. (ed.) Approximation algorithms for NP-hard problems, pp. 144–191. PWS Pub. Co., Boston (1997)

    Google Scholar 

  15. Schrijver, A.: Combinatorial optimization. In: Polyhedra and efficiency Paths, flows, matchings, Chapters. Algorithms and Combinatorics, vol. A24, pp. 1–38. Springer, Berlin (2003)

    Google Scholar 

  16. Bell, G.J., Lamar, B.W.: Solution methods for nonconvex network flow problems. In: Network optimization, Gainesville, FL, 1996. Lecture Notes in Econom. and Math. Systems, vol. 450, pp. 32–50. Springer, Berlin (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Magnanti, T.L., Stratila, D. (2004). Separable Concave Optimization Approximately Equals Piecewise Linear Optimization. In: Bienstock, D., Nemhauser, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2004. Lecture Notes in Computer Science, vol 3064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25960-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25960-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22113-5

  • Online ISBN: 978-3-540-25960-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics