Skip to main content

A Finite Element Scheme for the Euler Equations

  • Chapter
Numerical Simulation of Compressible Euler Flows

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 26))

  • 225 Accesses

Summary

We present an adaptive finite element technique for solving the Euler equations. The solver is a high resolution explicit scheme based on the implementation over linear triangular elements of the flux corrected transport (FCT) procedure. The adaptive approach is accomplished by regenerating a new mesh using information of the ‘optimum’ local grid characteristics, obtained from the computed solution in the current mesh. In the remeshing procedure the elements can be stretched in the direction of any one-dimensional features and their size may vary significantly through the region of interest. This leads to meshes in which the number of nodes does not increase dramatically at each step of the adaptive procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Cavendish: ‘Automatic triangulation of arbitrary planar domains for the finite element method’, Int. J. Num. Meth. Engng. 8, 679–696, 1974.

    Article  MATH  Google Scholar 

  2. S.H. Lo: ‘A new mesh generation scheme for arbitrary planar domains’, Int. J. Num. Meth. Engng. 21, 1403–1426, 1985.

    Article  MATH  Google Scholar 

  3. R. Löhner, K. Morgan, J. Peraire and O.C. Zienkiewicz: ‘Finite element methods for high speed flows’, AIAA paper 85–1531-CP, 1985.

    Google Scholar 

  4. F. Angrand, V. Billey, A. Dervieux, J. Periaux, C. Pouletty and B. Stoufflet: ‘2D and 3D Euler flow calculations with a second order accurate Galerkin finite element method’, AIAA paper 85–1706, 1985.

    Google Scholar 

  5. J.P. Boris and D.L. Book: ‘Flux corrected transport I. SHASTA, a fluid transport algorithm that works’, J. Comp. Phys. 11, 38–69, 1973.

    Article  ADS  MATH  Google Scholar 

  6. S.T. Zalesak: ‘Fully multidimensional flux corrected transport algorithm for fluids’, J. Comp. Phys. 31, 335–362, 1979.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. R. Löhner, K. Morgan and O.C. Zienkiewicz: ‘An adaptive finite element procedure for compressible high speed flows’, Comp. Meth. Appl. Mech. Engng. 51, 441–465, 1985.

    Article  MATH  Google Scholar 

  8. R. Löhner, K. Morgan, M. Vahdati, J.P. Boris and D.L. Book: ‘FEM-FCT: Combining unstructured grids with high resolution’, University College of Swansea Report C/R/539/86, 1986.

    Google Scholar 

  9. K. Morgan, R. Löhner, J.R. Jones, J. Peraire and M. Vahdati: ‘Finite element FCT for the Euler and Navier-Stokes equations’ in the Proccedings of the 6th International Symposium on Finite Element Methods in Flow Problems, Antibes, 1986.

    Google Scholar 

  10. J.F. Dannenhoffer and J.R. Baron: ‘Grid adaptation for the 2D Euler equations’, AIAA paper 84–0484, 1984.

    Google Scholar 

  11. J. Peraire, M. Vahdati, K. Morgan and O.C. Zienkiewicz: ‘Adaptive remeshing for compressible flow calculations’, University College of Swansea Report C/R/544/86, 1986.

    Google Scholar 

  12. P.L. Roe: ‘Approximate Riemann solvers, parameter vectors and difference schemes’, J. Comp. Phys. 43, 357–372, 1981.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. B. van Leer: ‘Towards the ultimate conservative scheme II. Monotonicity and conservation combined in a second order scheme’, J. Comp. Phys. 14, 361–370, 1974.

    Article  ADS  MATH  Google Scholar 

  14. A.K. Parrott and M.A. Christie: ‘FCT applied to the 2-D finite element solution of tracer transport by single phase flow in a porous medium’ in the Proceedings of the ICFD Conference on Numerical Methods in Fluid Dynamics, Reading, 1986.

    Google Scholar 

  15. J. T. Oden: ‘Grid optimisation and adaptive meshes for finite element methods’, University of Texas at Austin Notes, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alain Dervieux Bram Van Leer Jacques Periaux Arthur Rizzi

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Friedr Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Morgan, K., Peraire, J., Peiro, J., Zienkiewicz, O.C. (1989). A Finite Element Scheme for the Euler Equations. In: Dervieux, A., Leer, B.V., Periaux, J., Rizzi, A. (eds) Numerical Simulation of Compressible Euler Flows. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 26. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-87875-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-87875-5_15

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-528-07626-9

  • Online ISBN: 978-3-322-87875-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics