Skip to main content

Vacancy Trapping in Fcc Metals Studied by Perturbed Angular Correlations

  • Chapter
Book cover Nuclear Physics Methods in Materials Research

Abstract

Already in the early sixties, Hinman et al. 1)have studied elementary point defects — their production, migration, agglomeration and trapping — by perturbed angular correlation (PAC) measurements on 111In recoilimplanted in silver. About 10 years later, the same system was investigated by Behar and Steffen who 2)were the first to discover a radiation induced unique quadrupole frequency. Since then, there has been a steady stream of over 30 publications on defects in fcc metals. Till now, PAC measurements using 111In as a probe have revealed altogether 17 discrete frequencies in 7 fcc metals (Ag 1−4), Al 5−6), Au 7), Cu 8−9), Ni 1−12), Pd 13−16), Pt 16−18)), each frequency standing for a different but well defined lattice defect. It is the aim of this paper to classify these defects by comparing results obtained for various metals, rather than to discuss each metal separately. The restriction to fcc metals and to 111In is not as severe as it might seem, because these systems constitute the only body of data that allows systematic comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.W. Hinman, G.R. Hoy, J.K. Lees and J.C. Serio, Phys.Rev. 135 (1964) A218.

    Article  Google Scholar 

  2. M. Behar and R.M. Steffen, Phys.Rev. C7 (1973) 788.

    Google Scholar 

  3. L. Thomé and H. Bernas, Hyp.Int. 5 (1978) 361.

    Article  Google Scholar 

  4. R. Butt, R. Keitel and G. Vogl, Annual Report 1978 (Hahn-MeitnerInstitut, Bereich Kern-und Strahlenphysik, Berlin, 1979), p.68.

    Google Scholar 

  5. H. Rinneberg and H. Haas, Hyp.Int. 4 (1978) 678.

    Article  Google Scholar 

  6. H. Rinneberg, W. Semmler and G. Antesberger, Phys.Lett. 66A (1978) 57.

    Google Scholar 

  7. M. Deicher, E. Recknagel and Th. Wichert, Annual Report 1979 (Universität Konstanz, Nukleare Festkörperphysik, Konstanz, 1980), p.9.

    Google Scholar 

  8. O. Echt, E. Recknagel, A. Weidinger and Th. Wichert, Z.Phys. B32 (1978) 59.

    Google Scholar 

  9. Th. Wichert, M. Deicher, O. Echt and E. Recknagel, Phys.Rev.Lett. 41 (1978) 1659.

    Article  Google Scholar 

  10. C. Hohenemser, A.R. Arends, H. de Waard, H.G. Devare, F. Pleiter and S.A. Drentje, Hyp.Int. 3 (1977) 297.

    Article  Google Scholar 

  11. F. Pleiter, Hyp.Int. 5 (1977) 109.

    Article  Google Scholar 

  12. R.M. Suter, M. Haoui and C. Hohenemser, Hyp.Int. 4 (1978) 711.

    Article  Google Scholar 

  13. H. Bertschat, H. Haas, F. Pleiter, E. Recknagel, E. Schlodder and B. Spellmeyer, Phys.Rev. B12 (1975) 1.

    Google Scholar 

  14. H. Bertschat, O. Echt, H. Haas, E. Ivanov, F. Pleiter, E. Recknagel, E. Schlodder and B. Spellmeyer, Hyp.Int. 2 (1976) 339.

    Article  Google Scholar 

  15. R. Butt, H. Haas, T. Butz, W. Mansel and A. Vasquez, Phys.Lett. 64A (1977) 309.

    Google Scholar 

  16. H.G. Müller, Thesis, Universität Bonn, 1979.

    Google Scholar 

  17. H.G. Müller and K. Krusch, Hyp.Int. 4 (1978) 697.

    Article  Google Scholar 

  18. F. Pleiter, W.Z. Venema and A.R. Arends, Hyp.Int. 4 (1978) 693.

    Article  Google Scholar 

  19. G. Burger, K. Isebeck, J. Volkl, W. Schilling and H. Wenzl, Z.Angew.Phys. 152 (1966) 693.

    Google Scholar 

  20. M. Nakagawa, K. Bönig, P. Rosner and G. Vogl, Phys.Rev. B16 (1977) 5285.

    Google Scholar 

  21. R.W. Baluffi, J.Nucl.Mat. 69&70 (1978) 240.

    Article  Google Scholar 

  22. J.S. Koehler, in: Vacancies and Interstitials in Metals, eds. A. Seeger, D. Schumacher, W. Schilling and J. Diehl (North-Holland, Amsterdam, 1970), p.169.

    Google Scholar 

  23. A. Seeger and H. Mehrer, I.e. Ref. 22), p.1.

    Google Scholar 

  24. W. Köster and H.P. Kehrer, Z.Metallk. 56 (1965) 760.

    Google Scholar 

  25. G. Dlubek, O. Brummer, N. Meyendorff, P. Hautojärvi, A. Vehanen and J. Yli-Kauppila, J.Phys. F9 (1979) 1961.

    Article  Google Scholar 

  26. Proceedings of the Vth International Conference on Hyperfine Interactions, Berlin, 1980; to be published in Hyp.Int.

    Google Scholar 

  27. F. Pleiter, A.R. Arends and H. de Waard, Phys.Lett. 77A (1980) 81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus Bethge Horst Baumann Hartmut Jex Friedrich Rauch

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Pleiter, F. (1980). Vacancy Trapping in Fcc Metals Studied by Perturbed Angular Correlations. In: Bethge, K., Baumann, H., Jex, H., Rauch, F. (eds) Nuclear Physics Methods in Materials Research. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-85996-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-85996-9_12

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-528-08489-9

  • Online ISBN: 978-3-322-85996-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics