Skip to main content

Abschätzung des Beitrages von Miscanthus zur Bildung der organischen Bodensubstanz mit Hilfe der natürlichen 13C-Abundanz

  • Chapter
Wurzelinduzierte Bodenvorgänge

Abstract

One possibility to sequester carbon in soil could be the cultivation of renewable energy plants like Miscanthus x giganteus. In this preliminary investigation the contribution of Miscanthus derived carbon to formation of soil organic matter in a sandy and a loamy soil has been investigated using natural 13C abundance. In Ah of the loamy soil, 21% (0–10 cm) and 11% (20–30 cm) of soil organic carbon was derived from Miscanthus after 9 years of continuos cultivation, while portions of Miscanthus derived C exceeded 17% (0–10 cm) and 8% (10–20 cm) in the sandy soil. This significant contribution of Miscanthus derived carbon demonstrates the interesting possibility in using renewable energy plants for carbon sequestration in soils and using Miscanthus for further investigations of soil organic matter dynamics. This dynamic differ from that one of maize used in studies with natural 13C abundance method because of much higher below-ground biomass, absence of soil cultivation and deep root system of Miscanthus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  • Balesdent, J.; Balabane,M., 1992: Maize root-derived soil organic carbon estimated by natural 13C abundance. Soil Biology and Biochemistry 24, 97–101.

    Article  Google Scholar 

  • Balesdent, J.; Balabane, M., 1996: Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biology and Biochemistry 28, 1261–1263.

    Article  CAS  Google Scholar 

  • Balesdent, J.; Mariotti, A.; Boisgontier, D., 1990: Effect of tillage on soil organic C mineraliza-tion estimated from 13C abundance in maize fields. Journal of Soil Science 41, 587–596.

    Article  CAS  Google Scholar 

  • Balesdent, J.; Wagner, G.; Mariotii, A., 1988: Soil organic matter turnover in long-term field experiments as revealed by Carbon-13 natural abundance. Soil Science Society of America Journal 52, 118–124.

    Article  CAS  Google Scholar 

  • Beuch, S., 1998: Zum Einfluss des Anbaus und der Biomassestruktur von Miscanthus x giganteus (Greef et Deu.) auf den Nährstoffhaushalt und die organische Bodensubstanz. Dissertation, Universität Rostock, Rostock.

    Google Scholar 

  • Bohm, S.; Rice, C.; Schlegel, A., 2002: Soil carbon turnover in residue managed wheat and grain sorghum. In: Kimble, J.; Lal, R. and Follett, R.: Agricultural practices and policies for carbon sequestration in soil, Lewis publishers, Boca Raton, 255–263

    Google Scholar 

  • Cambardella, C.; Elliot, E., 1992: Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence. Soil Science Society of America Journal 56, 777–783.

    Article  Google Scholar 

  • Collins, H.; Elliott, E.; Paustian, K.; Bundy, L.; Dick, W.; Huggins, D.; Smucker, A; Paul, E., 2000: Soil carbon pools and fluxes in long-term corn belt agroecosys-tems. Soil Biology and Biochemistry 32, 157–168.

    Article  CAS  Google Scholar 

  • Dixon, R., 1995: Agroforestry Systems: sources or sinks of greenhouse gases¿ Agroforestry Systems 31, 99–116.

    Article  Google Scholar 

  • Flessa, H.; Ludwig, B.; Heil, B.; Merbach, W., 2000: The origin of soil organic C, dissolved organic C and respiration in a long-term maize experiment in Halle, Germany, determined by 13C natural abundance. Journal of Plant Nutrition and Soil Scien-ce 163, 157–463.

    Article  CAS  Google Scholar 

  • Garten, C; Wullschleger, S., 1999: Soil carbon inventories under a bioenergy crop (Switchgras): Measurement limitations. Journal of Environmental Quality 28, 1359–1365.

    Article  CAS  Google Scholar 

  • Garten, C.; Wullschleger, S., 2000: Plant and environment interaction- Soil carbon dynamics beneath Switchgras as Indicated by Stable Isotope Analysis. Journal of Environmental Quality 29, 645–653.

    Article  CAS  Google Scholar 

  • Johnson, M.; Levine, E.; Kern, J., 1995: Soil organic matter: distribution, genesis, and manage-ment to reduce greenhouse gas emissions. Water, Air and Soil Pollution 82, 593–615.

    Article  CAS  Google Scholar 

  • Körschens, M., 1996: Die organische Substanz des Bodens als Quelle und Senke für Kohlenstoff. Mitteilungen der Gesellschaft für Pflanzenbauwissenschaften 9, 261–262.

    Google Scholar 

  • Ludwig B.; John B.; Ellerbrock R.; Kaiser M.; Flessa H., 2003: Stabilization of C from maize in a sandy soil in a long-term experiment. European Journal of Soil Science 54, 117–126.

    Article  CAS  Google Scholar 

  • Miridokawa, B.; Shimada, Y.; Iwaki H.; Ohga N., 1975: Root production in seminatural grassland community dominated by Miscanthus sinensis in the Kawatabi area. In: Numata, N.,: Ecological studies in Japanese grasslands, Tokyo

    Google Scholar 

  • Post W.; Izzauralde R; Mann L.; Buss N., 2001: Monitoring and verifying changes of organic carbon in soil. In: Rosenberg, N.; Izaurralde, R.: Storing Carbon in Agricultural Soils: A Multi-Purpose Environmental Strategy, Kluwer Academic Publishers, Dordrecht, 73–99

    Google Scholar 

  • Puget, P.; Chenu, C; Balesdent, J., 1995: Total and young organic matter distributions in aggre-gates of silty cultivated soils. European Journal of Soil Science 46, 449–459.

    Article  Google Scholar 

  • Rochetie, P.; Flanagan, L., 1997: Quantifying rhizosphere respiration in a corn crop under field conditions. Soil Science Society of America Journal 61, 466–474.

    Article  Google Scholar 

  • Scharpenseel, H., 1993: Major C reservoirs of the pedosphere, source-sink relations, potential of D14C and δ13C as supporting methodologies. Water, Air, and Soil Pollution 70, 431–442.

    Article  CAS  Google Scholar 

  • Volkoff, B.; Cerri, C., 1987: Carbon isotopic fractionation in subtropical Brazilian grassland soils. Comparison with tropical forest soils. Plant and Soil 102, 27–31.

    Article  CAS  Google Scholar 

  • Wang, Y.; Hsieh, Y.-P., 2002: Uncertainties and novel prospects in the study of the soil organic carbon dynamics. Chemosphere 49, 791–804.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 B. G. Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden

About this chapter

Cite this chapter

Schneckenberger, K., Kuzyakov, Y. (2004). Abschätzung des Beitrages von Miscanthus zur Bildung der organischen Bodensubstanz mit Hilfe der natürlichen 13C-Abundanz. In: Merbach, W., Egle, K., Augustin, J. (eds) Wurzelinduzierte Bodenvorgänge. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-80084-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-80084-8_16

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-00516-2

  • Online ISBN: 978-3-322-80084-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics