Skip to main content

Phage Therapy and Antibiotics for Biofilm Eradication: A Predictive Model

  • Conference paper
  • First Online:
Recent Advances in Mathematical and Statistical Methods (AMMCS 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 259))

Abstract

Bacteria that make up the complex physical structures known as biofilms can be 10–1000 fold more resistant to antibiotics than planktonic (free-living) bacteria. In this study we develop a mathematical model to analyze therapeutic techniques that have been proposed to reduce and/or eradicate biofilms, specifically, antibiotics and phage therapy. In this context, the biofilm can be understood as a group defense mechanism, such that the functional response of phages to the biofilm bacterial density is reduced as the biofilm approaches carrying capacity. To capture this mechanism we introduce the function \(f(x)=\left( \kappa -\frac{x}{K}\right) x,\) where x is the biofilm density, K is the biofilm carrying capacity and \(1<\kappa <2\) is the group defense parameter. The model predicts that two therapeutic strategies of recent experimental interest (phage therapy followed by antibiotics, or antibiotics followed by phage therapy) can reduce but not eradicate the biofilm. In contrast, we predict that complete elimination of biofilm bacteria can be achieved by mechanisms that block the attachment of planktonic bacteria to the biofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abedon, S.T. (ed.): Bacteriophage Ecology: Population Growth, Evolution, and Impact of Bacterial Viruses. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  2. Abedon, S.T.: Ecology of anti-biofilm agents I: antibiotics versus bacteriophages. Pharmaceuticals 8(3), 525–558 (2015a)

    Article  Google Scholar 

  3. Abedon, S.T.: Ecology of anti-biofilm agents II: bacteriophage exploitation and biocontrol of biofilm bacteria. Pharmaceuticals (Basel) 8(3), 559–589 (2015b)

    Article  Google Scholar 

  4. Andrews, J.F.: A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10(6), 707–723 (1968)

    Article  Google Scholar 

  5. Azeredo, J., Sutherland, I.W.: The use of phages for the removal of infectious biofilms. Curr. Pharm. Biotechnol. 9(4), 261–266 (2008)

    Article  Google Scholar 

  6. Broer, H.W., Naudot, V., Roussarie, R., Saleh, K.: A predator-prey model with non-monotonic response function. Regul. Chaotic Dyn. 11, 155–165 (2006)

    Article  MathSciNet  Google Scholar 

  7. Chaudhry, W.N., Concepcin-Acevedo, J., Park, T., Andleeb, S., Bull, J.J., Levin, B.R.: Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLOS ONE 12(1), e0168615 (2017)

    Article  Google Scholar 

  8. Ciofu, O., Rojo-Molinero, E., Maci, M.D., Oliver, A.: Antibiotic treatment of biofilm infections. APMIS 125(4), 304–319 (2017)

    Article  Google Scholar 

  9. Davies, D.: Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discovery 2(2), 114–122 (2003)

    Article  MathSciNet  Google Scholar 

  10. Doolittle, M.M., Cooney, J.J., Caldwell, D.E.: Tracing the interaction of bacteriophage with bacterial biofilms using fluorescent and chromogenic probes. J. Ind. Microbiol. 16(6), 331–341 (1996)

    Article  Google Scholar 

  11. Douterelo, I., Husband, S., Loza, V., Boxall, J.: Dynamics of biofilm regrowth in drinking water distribution systems. Appl. Environ. Microbiol. 82(14), 4155–4168 (2016)

    Article  Google Scholar 

  12. Feng, G., Cheng, Y., Wang, S.-Y., Borca-Tasciuc, D.A., Worobo, R.W., Moraru, C.I.: Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: how small is small enough? NPJ Biofilms Microbiomes 1, 201522 (2015)

    Article  Google Scholar 

  13. Fernndez, L., Gonzlez, S., Campelo, A.B., Martnez, B., Rodrguez, A., Garca, P.: Low-level predation by lytic phage phiIPLA-RODI promotes biofilm formation and triggers the stringent response in Staphylococcus aureus. Sci. Rep. 7, 40965 (2017)

    Article  Google Scholar 

  14. Fleming, D., Rumbaugh, K.P.: Approaches to dispersing medical biofilms. Microorganisms 5(2), 15 (2017)

    Article  Google Scholar 

  15. Freedman, H.I., Wolkowicz, G.S.K.: Predator-prey systems with group defence: the paradox of enrichment revisited. Bull. Math. Biol. 48(5–6), 493–508 (1986)

    Article  MathSciNet  Google Scholar 

  16. Freter, R., Brickner, H., Fekete, J., Vickerman, M.M., Carey, K.E.: Survival and implantation of Escherichia coli in the intestinal tract. Infect. Immun. 39(2), 686–703 (1983)

    Google Scholar 

  17. Fux, C.A., Stoodley, P., Hall-Stoodley, L., Costerton, J.W.: Bacterial biofilms: a diagnostic and therapeutic challenge. Expert Rev. Anti-Infective Ther. 1(4), 667–683 (2003)

    Article  Google Scholar 

  18. Harper, D.R., Parracho, H.M.R.T., Walker, J., Sharp, R., Hughes, G., Werthn, M., Lehman, S., Morales, S.: Bacteriophages and biofilms. Antibiotics 3(3), 270 (2014)

    Article  Google Scholar 

  19. Jiang, J., Yu, P.: Multistable phenomena involving equilibria and periodic motions in predator-prey systems. Int. J. Bifurcat. Chaos 27(03), 1750043 (2017)

    Article  MathSciNet  Google Scholar 

  20. Jones, D., Kojouharov, H.V., Le, D., Smith, H.: The Freter model: a simple model of biofilm formation. J. Math. Biol. 47(2), 137–152 (2003)

    Article  MathSciNet  Google Scholar 

  21. Lee, J.-H., Park, J.-H., Kim, J.-A., Neupane, G.P., Cho, M.H., Lee, C.-S., Lee, J.: Low concentrations of honey reduce biofilm formation, quorum sensing, and virulence in Escherichia coli O157:H7. Biofouling 27(10), 1095–1104 (2011)

    Article  Google Scholar 

  22. Lenski, R.E.: Dynamics of interactions between bacteria and virulent bacteriophage. In: Advances in Microbial Ecology, pp. 1–44. Springer, Boston, MA. (1988). https://doi.org/10.1007/978-1-4684-5409-3_1

  23. Lynch, A.S., Abbanat, D.: New antibiotic agents and approaches to treat biofilm-associated infections. Expert Opin. Ther. Pat. 20(10), 1373–1387 (2010)

    Article  Google Scholar 

  24. Mu, H., Tang, J., Liu, Q., Sun, C., Wang, T., Duan, J.: Potent antibacterial nanoparticles against biofilm and intracellular bacteria. Sci. Rep. 6, 18877 (2016)

    Article  Google Scholar 

  25. Omar, A., Wright, J.B., Schultz, G., Burrell, R., Nadworny, P.: Microbial biofilms and chronic wounds. Microorganisms 5(1), 9 (2017)

    Article  Google Scholar 

  26. Ryan, E.M., Alkawareek, M.Y., Donnelly, R.F., Gilmore, B.F.: Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol. Med. Microbiol. 65(2), 395–398 (2012)

    Article  Google Scholar 

  27. Van Houdt, R., Michiels, C.: Biofilm formation and the food industry, a focus on the bacterial outer surface. J. Appl. Microbiol. 109(4), 1117–1131 (2010)

    Article  Google Scholar 

  28. Wolkowicz, G.: Bifurcation analysis of a predator-prey system involving group defence. SIAM J. Appl. Math. 48(3), 592–606 (1988)

    Article  MathSciNet  Google Scholar 

  29. Xiao, D., Ruan, S.: Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61(4), 1445–1472 (2001)

    Article  MathSciNet  Google Scholar 

  30. Zhu, H., Campbell, S.A., Wolkowicz, G.S.K.: Bifurcation analysis of a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 63(2), 636–682 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindi M. Wahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, A., Wahl, L.M., Yu, P. (2018). Phage Therapy and Antibiotics for Biofilm Eradication: A Predictive Model. In: Kilgour, D., Kunze, H., Makarov, R., Melnik, R., Wang, X. (eds) Recent Advances in Mathematical and Statistical Methods . AMMCS 2017. Springer Proceedings in Mathematics & Statistics, vol 259. Springer, Cham. https://doi.org/10.1007/978-3-319-99719-3_34

Download citation

Publish with us

Policies and ethics