Skip to main content

Data Challenges of In Situ X-Ray Tomography for Materials Discovery and Characterization

  • Chapter
  • First Online:
Book cover Materials Discovery and Design

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 280))

Abstract

Since its development in the 1970s (Hounsfield, Br J Radiol 46(552):1016–1022, 1973) [1], X-ray tomography has been used to study the three dimensional (3D) structure of nearly every type of material of interest to science, both in the laboratory (Elliott and Dover, J Microsc 126(2):211–213, 1982) [2] and at synchrotron facilities (Thompson et al., Nucl Instrum Methods Phys Res 222(1):319–323, 1984) [3]. The ability to nondestructively image internal structures is useful in the medical community for patient diagnosis. For this same reason, it is critical for understanding material structural morphology . X-ray tomography of static materials can generate a true 3D structure to map out content and distribution within materials including voids, cracks, inclusions, microstructure, and interfacial quality. This technology is even more useful when applying a time component and studying the changes in materials as they are subjected to non-equilibrium stimulations. For example, testing mechanical properties (e.g., compressive or tensile loading), thermal properties (e.g., melting or solidification), corrosion, or electrostatic responses, while simultaneously imaging the material in situ, can replicate real world conditions leading to an increase in the fundamental understanding of how materials react to these stimuli. Mechanical buckling in foams, migration of cracks in composite materials, progression of a solidification front during metal solidification, and the formation of sub-surface corrosion pits are just a few of the many applications of this technology. This chapter will outline the challenges of taking a series of radiographs while simultaneously stressing a material, and processing it to answer questions about material properties. The path is complex, highly user interactive, and the resulting quality of the processing at each step can greatly affect the accuracy and usefulness of the derived information. Understanding the current state-of-the-art is critical to informing the audience of what capabilities are available for materials studies, what the challenges are in processing these large data sets, and which developments can guide future experiments. For example, one particular challenge in this type of measurement is the need for a carefully designed experiment so that the requirements of 3D imaging are also met. Additionally, the rapid collection of many terabytes of data in just a few days leads to the required development of automated reconstruction, filtering, segmentation , visualization, and animation techniques. Finally, taking these qualitative images and acquiring quantitative metrics (e.g., morphological statistics ), converting the high quality 3D images to meshes suitable for modeling, and coordinating the images to secondary measures (e.g., temperature, force response) has proven to be a significant challenge when a materials scientist ‘simply’ needs an understanding of how material processing affects its response to stimuli. This chapter will outline the types of in situ experiments and the large data challenges in extracting materials properties information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.N. Hounsfield, Computerized transverse axial scanning (tomography): Part 1. Description of system. Br. J. Radiol. 46(552), 1016–1022 (1973)

    Article  Google Scholar 

  2. J.C. Elliott, S.D. Dover, X-ray microtomography. J. Microsc. 126(2), 211–213 (1982)

    Article  Google Scholar 

  3. A.C. Thompson, J. Llacer, L. Campbell Finman, E.B. Hughes, J.N. Otis, S. Wilson, H.D. Zeman, Computed tomography using synchrotron radiation. Nucl. Instrum. Methods Phys. Res. 222(1), 319–323 (1984)

    Article  ADS  Google Scholar 

  4. C. Bressler, M. Chergui, Ultrafast X-ray absorption spectroscopy. Chem. Rev. 104(4), 1781–1812 (2004)

    Article  Google Scholar 

  5. G. Renaud, R. Lazzari, F. Leroy, Probing surface and interface morphology with grazing incidence small angle X-ray scattering. Surf. Sci. Rep. 64(8), 255–380 (2009)

    Article  ADS  Google Scholar 

  6. F. Adams, K. Janssens, A. Snigirev, Microscopic X-ray fluorescence analysis and related methods with laboratory and synchrotron radiation sources. J. Anal. At. Spectrom. 13(5), 319–331 (1998)

    Article  Google Scholar 

  7. G.J. Havrilla, T. Miller, Micro X-ray fluorescence in materials characterization. Powder Diffr. 19(2), 119–126 (2012)

    Article  ADS  Google Scholar 

  8. A.M. Beale, S.D.M. Jacques, E.K. Gibson, M. Di Michiel, Progress towards five dimensional diffraction imaging of functional materials under process conditions. Coord. Chem. Rev. 277–278, 208–223 (2014)

    Article  Google Scholar 

  9. A. King, P. Reischig, J. Adrien, S. Peetermans, W. Ludwig, Polychromatic diffraction contrast tomography. Mater. Charact. 97, 1–10 (2014)

    Article  Google Scholar 

  10. D.J. Jensen, 4D characterization of metal microstructures, in Microstructural Design of Advanced Engineering Materials (Wiley-VCH Verlag GmbH & Co. KGaA, 2013), pp. 367–385

    Google Scholar 

  11. A.R. Woll, J. Mass, C. Bisulca, R. Huang, D.H. Bilderback, S. Gruner, N. Gao, Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source. Appl. Phys. A 83(2), 235–238 (2006)

    Article  ADS  Google Scholar 

  12. B. Kanngießer, W. Malzer, I. Reiche, A new 3D micro X-ray fluorescence analysis set-up—first archaeometric applications. Nucl. Instrum. Methods Phys. Res. Sect. B 211(2), 259–264 (2003)

    Article  ADS  Google Scholar 

  13. B. Laforce, B. Vermeulen, J. Garrevoet, B. Vekemans, L.V. Hoorebeke, C. Janssen, L. Vincze, Laboratory scale X-ray fluorescence tomography: instrument characterization and application in earth and environmental science. Anal. Chem. 88(6), 3386–3391 (2016)

    Article  Google Scholar 

  14. C. Yu-Tung, L. Tsung-Nan, S.C. Yong, Y. Jaemock, L. Chi-Jen, W. Jun-Yue, W. Cheng-Liang, C. Chen-Wei, H. Tzu-En, H. Yeukuang, S. Qun, Y. Gung-Chian, S.L. Keng, L. Hong-Ming, J. Jung Ho, M. Giorgio, Full-field hard X-ray microscopy below 30 nm: a challenging nanofabrication achievement. Nanotechnology 19(39), 395302 (2008)

    Article  Google Scholar 

  15. Y.S. Chu, J.M. Yi, F.D. Carlo, Q. Shen, W.-K. Lee, H.J. Wu, C.L. Wang, J.Y. Wang, C.J. Liu, C.H. Wang, S.R. Wu, C.C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K.S. Liang, C.S. Yang, J.H. Je, G. Margaritondo, Hard-X-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution. Appl. Phys. Lett. 92(10), 103119 (2008)

    Article  ADS  Google Scholar 

  16. G. Schneider, X-ray microscopy: methods and perspectives. Anal. Bioanal. Chem. 376(5), 558–561 (2003)

    Article  Google Scholar 

  17. A. Burteau, F. N’Guyen, J.D. Bartout, S. Forest, Y. Bienvenu, S. Saberi, D. Naumann, Impact of material processing and deformation on cell morphology and mechanical behavior of polyurethane and nickel foams. Int. J. Solids Struct. 49(19–20), 2714–2732 (2012)

    Article  Google Scholar 

  18. A. Elmoutaouakkil, L. Salvo, E. Maire, G. Peix, 2D and 3D characterization of metal foams using X-ray tomography. Adv. Eng. Mater. 4(10), 803–807 (2002)

    Article  Google Scholar 

  19. E. Maire, A. Elmoutaouakkil, A. Fazekas, L. Salvo, In situ X-ray tomography measurements of deformation in cellular solids. MRS Bull. 28, 284–289 (2003)

    Article  Google Scholar 

  20. K. Mader, R. Mokso, C. Raufaste, B. Dollet, S. Santucci, J. Lambert, M. Stampanoni, Quantitative 3D characterization of cellular materials: segmentation and morphology of foam. Colloids Surf. A 415, 230–238 (2012)

    Article  Google Scholar 

  21. K. Calvert, K. Trumble, T. Webster, L. Kirkpatrick, Characterization of commercial rigid polyurethane foams used as bone analogs for implant testing. J. Mater. Sci. Mater. Med. 21(5), 1453–1461 (2010)

    Article  Google Scholar 

  22. S.G. Bardenhagen, B.M. Patterson, C.M. Cady, W. Lewis Matthew, M. Dattelbaum Dana, The mechanics of LANL foam pads, in ADTSC Nuclear Weapons Highlights 2007, 07-041 (2007)

    Google Scholar 

  23. B.M. Patterson, G.J. Havrilla, J.R. Schoonover, Elemental and molecular characterization of aged polydimethylsiloxane foams. Appl. Spectrosc. 60(10), 1103–1110 (2006)

    Article  ADS  Google Scholar 

  24. M.P. Morigi, F. Casali, M. Bettuzzi, D. Bianconi, R. Brancaccio, S. Cornacchia, A. Pasini, A. Rossi, A. Aldrovandi, D. Cauzzi, CT investigation of two paintings on wood tables by Gentile da Fabriano. Nucl. Instrum. Methods Phys. Res. A 580, 735–738 (2007)

    Article  ADS  Google Scholar 

  25. G.R.S. Naveh, V. Brumfeld, R. Shahar, S. Weiner, Tooth periodontal ligament: direct 3D microCT visualization of the collagen network and how the network changes when the tooth is loaded. J. Struct. Biol. 181(2), 108–115 (2013)

    Article  Google Scholar 

  26. P. Schneider, M. Stauber, R. Voide, M. Stampanoni, L.R. Donahue, R. Müller, Ultrastructural properties in cortical bone vary greatly in two inbred strains of mice as assessed by synchrotron light based micro- and nano-CT. J. Bone Miner. Res. 22(10), 1557–1570 (2007)

    Article  Google Scholar 

  27. U. Bonse, F. Busch, O. Günnewig, F. Beckmann, R. Pahl, G. Delling, M. Hahn, W. Graeff, 3D computed X-ray tomography of human cancellous bone at 8 μm spatial and 10−4 energy resolution. Bone and Mineral 25(1), 25–38 (1994)

    Article  Google Scholar 

  28. K.G. McIntosh, N. Cordes, B. Patterson, G. Havrilla, Laboratory-based characterization of Pu in soil particles using micro-XRF and 3D confocal XRF. J. Anal. At. Spectrom. (2015)

    Google Scholar 

  29. P. Krüger, H. Markötter, J. Haußmann, M. Klages, T. Arlt, J. Banhart, C. Hartnig, I. Manke, J. Scholta, Synchrotron X-ray tomography for investigations of water distribution in polymer electrolyte membrane fuel cells. J. Power Sources 196(12), 5250–5255 (2011)

    Article  ADS  Google Scholar 

  30. V.W. Manner, J.D. Yeager, B.M. Patterson, D.J. Walters, J.A. Stull, N.L. Cordes, D.J. Luscher, K.C. Henderson, A.M. Schmalzer, B.C. Tappan, In situ imaging during compression of plastic bonded explosives for damage modeling. MDPI 10(638) (2017)

    Article  ADS  Google Scholar 

  31. C.A. Larabell, M.A. Le Gros, X-ray tomography generates 3D reconstructions of the yeast, Saccharomyces cerevisiae, at 60-nm resolution. Mol. Biol. Cell 15, 957–962 (2004)

    Article  Google Scholar 

  32. T.G. Holesinger, J.S. Carpenter, T.J. Lienert, B.M. Patterson, P.A. Papin, H. Swenson, N.L. Cordes, Characterization of an aluminum alloy hemispherical shell fabricated via direct metal laser melting. JOM 68, 1–12 (2016)

    Article  Google Scholar 

  33. J.C.E. Mertens, K. Henderson, N.L. Cordes, R. Pacheco, X. Xiao, J.J. Williams, N. Chawla, B.M. Patterson, Analysis of thermal history effects on mechanical anisotropy of 3D-printed polymer matrix composites via in situ X-ray tomography. J. Mater. Sci. 52(20), 12185–12206 (2017)

    Article  ADS  Google Scholar 

  34. P. Tafforeau, R. Boistel, E. Boller, A. Bravin, M. Brunet, Y. Chaimanee, P. Cloetens, M. Feist, J. Hoszowska, J.J. Jaeger, R.F. Kay, V. Lazzari, L. Marivaux, A. Nel, C. Nemoz, X. Thibault, P. Vignaud, S. Zabler, Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl. Phys. A Mater. Sci. Process. 83(2), 195–202 (2006)

    Article  ADS  Google Scholar 

  35. N.L. Cordes, S. Seshadri, G. Havrilla, X. Yuan, M. Feser, B.M. Patterson, Three dimensional subsurface elemental identification of minerals using confocal micro X-ray fluorescence and micro X-ray computed tomography. Spectrochim. Acta Part B: At. Spectrosc. 103–104 (2015)

    Google Scholar 

  36. J. Nelson Weker, M.F. Toney, Emerging in situ and operando nanoscale X-ray imaging techniques for energy storage materials. Adv. Func. Mater. 25(11), 1622–1637 (2015)

    Article  Google Scholar 

  37. J. Wang, Y.-C.K. Chen-Wiegart, J. Wang, In situ three-dimensional synchrotron X-ray nanotomography of the (de)lithiation processes in tin anodes. Angew. Chem. Int. Ed. 53(17), 4460–4464 (2014)

    Article  Google Scholar 

  38. M. Ebner, F. Geldmacher, F. Marone, M. Stampanoni, V. Wood, X-ray tomography of porous, transition metal oxide based lithium ion battery electrodes. Adv. Energy Mater. 3(7), 845–850 (2013)

    Article  Google Scholar 

  39. I. Manke, J. Banhart, A. Haibel, A. Rack, S. Zabler, N. Kardjilov, A. Hilger, A. Melzer, H. Riesemeier, In situ investigation of the discharge of alkaline Zn–MnO2 batteries with synchrotron X-ray and neutron tomographies. Appl. Phys. Lett. 90(21), 214102 (2007)

    Article  ADS  Google Scholar 

  40. E.S.B. Ferreira, J.J. Boon, N.C. Scherrer, F. Marone, M. Stampanoni, 3D synchrotron X-ray microtomography of paint samples. Proc. SPIE, 7391 (73910L) (2009)

    Google Scholar 

  41. C. Scheuerlein, M.D. Michiel, M. Scheel, J. Jiang, F. Kametani, A. Malagoli, E.E. Hellstrom, D.C. Larbalestier, Void and phase evolution during the processing of Bi-2212 superconducting wires monitored by combined fast synchrotron micro-tomography and X-ray diffraction. Supercond. Sci. Technol. 24(11), 115004 (2011)

    Article  ADS  Google Scholar 

  42. F. Meirer, D.T. Morris, S. Kalirai, Y. Liu, J.C. Andrews, B.M. Weckhuysen, Mapping metals incorporation of a whole single catalyst particle using element specific X-ray nanotomography. J. Am. Chem. Soc. 137(1), 102–105 (2015)

    Article  Google Scholar 

  43. J.-D. Grunwaldt, J.B. Wagner, R.E. Dunin-Borkowski, Imaging catalysts at work: a hierarchical approach from the macro- to the meso- and nano-scale. ChemCatChem 5(1), 62–80 (2013)

    Article  Google Scholar 

  44. S.S. Singh, J.J. Williams, X. Xiao, F. De Carlo, N. Chawla, In situ three dimensional (3D) X-ray synchrotron tomography of corrosion fatigue in Al7075 alloy, in Fatigue of Materials II: Advances and Emergences in Understanding, ed. by T.S. Srivatsan, M.A. Imam, R. Srinivasan (Springer International Publishing, Cham, 2016), pp. 17–25

    Google Scholar 

  45. H.X. Xie, D. Friedman, K. Mirpuri, N. Chawla, Electromigration damage characterization in Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solder joints by three-dimensional X-ray tomography and scanning electron microscopy. J. Electron. Mater. 43(1), 33–42 (2014)

    Article  ADS  Google Scholar 

  46. S.S. Singh, J.J. Williams, M.F. Lin, X. Xiao, F. De Carlo, N. Chawla, In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography. Mater. Res. Lett. 2(4), 217–220 (2014)

    Article  Google Scholar 

  47. J.C.E. Mertens, N. Chawla, A study of EM failure in a micro-scale Pb-free solder joint using a custom lab-scale X-ray computed tomography system (2014), pp. 92121E–92121E-9

    Google Scholar 

  48. J. Friedli, J.L. Fife, P. Di Napoli, M. Rappaz, X-ray tomographic microscopy analysis of the dendrite orientation transition in Al-Zn. IOP Conf. Ser.: Mater. Sci. Eng. 33(1), 012034 (2012)

    Article  Google Scholar 

  49. J.L. Fife, M. Rappaz, M. Pistone, T. Celcer, G. Mikuljan, M. Stampanoni, Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy. J. Synchrotron Radiat. 19(3), 352–358 (2012)

    Article  Google Scholar 

  50. A. Clarke, S. Imhoff, J. Cooley, B. Patterson, W.-K. Lee, K. Fezzaa, A. Deriy, T. Tucker, M.R. Katz, P. Gibbs, K. Clarke, R.D. Field, D.J. Thoma, D.F. Teter, X-ray imaging of Al-7at.% Cu during melting and solidification. Emerg. Mater. Res. 2(2), 90–98 (2013)

    Article  Google Scholar 

  51. L. Jiang, N. Chawla, M. Pacheco, V. Noveski, Three-dimensional (3D) microstructural characterization and quantification of reflow porosity in Sn-rich alloy/copper joints by X-ray tomography. Mater. Charact. 62(10), 970–975 (2011)

    Article  Google Scholar 

  52. P. Hruby, S.S. Singh, J.J. Williams, X. Xiao, F. De Carlo, N. Chawla, Fatigue crack growth in SiC particle reinforced Al alloy matrix composites at high and low R-ratios by in situ X-ray synchrotron tomography. Int. J. Fatigue 68, 136–143 (2014)

    Article  Google Scholar 

  53. J.J. Williams, K.E. Yazzie, E. Padilla, N. Chawla, X. Xiao, F. De Carlo, Understanding fatigue crack growth in aluminum alloys by in situ X-ray synchrotron tomography. Int. J. Fatigue 57, 79–85 (2013)

    Article  Google Scholar 

  54. J. Williams, K. Yazzie, N. Connor Phillips, N. Chawla, X. Xiao, F. De Carlo, N. Iyyer, M. Kittur, On the correlation between fatigue striation spacing and crack growth rate: a three-dimensional (3-D) X-ray synchrotron tomography study. Metall. Mater. Trans. A 42(13), 3845–3848 (2011)

    Article  Google Scholar 

  55. E. Padilla, V. Jakkali, L. Jiang, N. Chawla, Quantifying the effect of porosity on the evolution of deformation and damage in Sn-based solder joints by X-ray microtomography and microstructure-based finite element modeling. Acta Mater. 60(9), 4017–4026 (2012)

    Article  Google Scholar 

  56. J.J. Williams, N.C. Chapman, V. Jakkali, V.A. Tanna, N. Chawla, X. Xiao, F. De Carlo, Characterization of damage evolution in SiC particle reinforced Al alloy matrix composites by in-situ X-ray synchrotron tomography. Metall. Mater. Trans. A. 42(10), 2999–3005 (2011)

    Article  Google Scholar 

  57. H. Bart-Smith, A.F. Bastawros, D.R. Mumm, A.G. Evans, D.J. Sypeck, H.N.G. Wadley, Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping. Acta Mater. 46(10), 3583–3592 (1998)

    Article  Google Scholar 

  58. A. Guvenilir, T.M. Breunig, J.H. Kinney, S.R. Stock, Direct observation of crack opening as a function of applied load in the interior of a notched tensile sample of Al-Li 2090. Acta Mater. 45(5), 1977–1987 (1997)

    Article  Google Scholar 

  59. B.M. Patterson, K.C. Henderson, P.J. Gibbs, S.D. Imhoff, A.J. Clarke, Laboratory micro- and nanoscale X-ray tomographic investigation of Al–7at.%Cu solidification structures. Mater. Charact. 95, 18–26 (2014)

    Article  Google Scholar 

  60. E. Maire, P.J. Withers, Quantitative X-ray tomography. Int. Mater. Rev. 59(1), 1–43 (2014)

    Article  Google Scholar 

  61. C. Gupta, H. Toda, P. Mayr, C. Sommitsch, 3D creep cavitation characteristics and residual life assessment in high temperature steels: a critical review. Mater. Sci. Technol. 31(5), 603–626 (2015)

    Article  Google Scholar 

  62. B.M. Patterson, N.L. Cordes, K. Henderson, J. Williams, T. Stannard, S.S. Singh, A.R. Ovejero, X. Xiao, M. Robinson, N. Chawla, In situ X-ray synchrotron tomographic imaging during the compression of hyper-elastic polymeric materials. J. Mater. Sci. 51(1), 171–187 (2016)

    Article  ADS  Google Scholar 

  63. B.M. Patterson, K. Henderson, R.D. Gilbertson, S. Tornga, N.L. Cordes, M.E. Chavez, Z. Smith, Morphological and performance measures of polyurethane foams using X-ray CT and mechanical testing. Microsc. Microanal. 95, 18–26 (2014)

    Google Scholar 

  64. B.M. Patterson, K. Henderson, Z. Smith, Measure of morphological and performance properties in polymeric silicone foams by X-ray tomography. J. Mater. Sci. 48(5), 1986–1996 (2013)

    Article  ADS  Google Scholar 

  65. H. Bale, M. Blacklock, M.R. Begley, D.B. Marshall, B.N. Cox, R.O. Ritchie, Characterizing three-dimensional textile ceramic composites using synchrotron X-ray micro-computed-tomography. J. Am. Ceram. Soc. 95(1), 392–402 (2012)

    Article  Google Scholar 

  66. F. Awaja, M.-T. Nguyen, S. Zhang, B. Arhatari, The investigation of inner structural damage of UV and heat degraded polymer composites using X-ray micro CT. Compos. A Appl. Sci. Manuf. 42(4), 408–418 (2011)

    Article  Google Scholar 

  67. S.A. McDonald, M. Preuss, E. Maire, J.Y. Buffiere, P.M. Mummery, P.J. Withers, X-ray tomographic imaging of Ti/SiC composites. J. Microsc. 209(2), 102–112 (2003)

    Article  MathSciNet  Google Scholar 

  68. J. Villanova, R. Daudin, P. Lhuissier, D. Jauffrès, S. Lou, C.L. Martin, S. Labouré, R. Tucoulou, G. Martínez-Criado, L. Salvo, Fast in situ 3D nanoimaging: a new tool for dynamic characterization in materials science. Mater. Today (2017)

    Google Scholar 

  69. B.M. Patterson, N.L. Cordes, K. Henderson, J.C.E. Mertens, A.J. Clarke, B. Hornberger, A. Merkle, S. Etchin, A. Tkachuk, M. Leibowitz, D. Trapp, W. Qiu, B. Zhang, H. Bale, X. Lu, R. Hartwell, P.J. Withers, R.S. Bradley, In situ laboratory-based transmission X-ray microscopy and tomography of material deformation at the nanoscale. Exp. Mech. 56(9), 1585–1597 (2016)

    Article  Google Scholar 

  70. E. Maire, C. Le Bourlot, J. Adrien, A. Mortensen, R. Mokso, 20 Hz X-ray tomography during an in situ tensile test. Int. J. Fract. 200(1), 3–12 (2016)

    Article  Google Scholar 

  71. N.C. Chapman, J. Silva, J.J. Williams, N. Chawla, X. Xiao, Characterisation of thermal cycling induced cavitation in particle reinforced metal matrix composites by three-dimensional (3D) X-ray synchrotron tomography. Mater. Sci. Technol. 31(5), 573–578 (2015)

    Article  Google Scholar 

  72. P. Wright, X. Fu, I. Sinclair, S.M. Spearing, Ultra high resolution computed tomography of damage in notched carbon fiber—epoxy composites. J. Compos. Mater. 42(19), 1993–2002 (2008)

    Article  ADS  Google Scholar 

  73. A. Haboub, H.A. Bale, J.R. Nasiatka, B.N. Cox, D.B. Marshall, R.O. Ritchie, A.A. MacDowell, Tensile testing of materials at high temperatures above 1700 °C with in situ synchrotron X-ray micro-tomography. Rev. Sci. Instrum. 85(8), 083702 (2014)

    Article  ADS  Google Scholar 

  74. N. Limodin, L. Salvo, E. Boller, M. Suery, M. Felberbaum, S. Gailliegue, K. Madi, In situ and real-time 3D microtomography investigation of dendritic solidification in an Al-10wt.% Cu alloy. Acta Mater. 57, 2300–2310 (2009)

    Article  Google Scholar 

  75. S.D. Imhoff, P.J. Gibbs, M.R. Katz, T.J. Ott Jr., B.M. Patterson, W.K. Lee, K. Fezzaa, J.C. Cooley, A.J. Clarke, Dynamic evolution of liquid–liquid phase separation during continuous cooling. Mater. Chem. Phys. 153, 93–102 (2015)

    Article  Google Scholar 

  76. H.A. Bale, A. Haboub, A.A. MacDowell, J.R. Nasiatka, D.Y. Parkinson, B.N. Cox, D.B. Marshall, R.O. Ritchie, Real-time quantitative imaging of failure events in materials under load at temperatures above 1,600 °C. Nat. Mater. 12(1), 40–46 (2013)

    Article  ADS  Google Scholar 

  77. A. Bareggi, E. Maire, A. Lasalle, S. Deville, Dynamics of the freezing front during the solidification of a colloidal alumina aqueous suspension. In situ X-ray radiography, tomography, and modeling. J. Am. Ceram. Soc. 94(10), 3570–3578 (2011)

    Article  Google Scholar 

  78. A.J. Clarke, D. Tourret, S.D. Imhoff, P.J. Gibbs, K. Fezzaa, J.C. Cooley, W.-K. Lee, A. Deriy, B.M. Patterson, P.A. Papin, K.D. Clarke, R.D. Field, J.L. Smith, X-ray imaging and controlled solidification of Al-Cu alloys toward microstructures by design. Adv. Eng. Mater. 17(4), 454–459 (2015)

    Article  Google Scholar 

  79. B.J. Connolly, D.A. Horner, S.J. Fox, A.J. Davenport, C. Padovani, S. Zhou, A. Turnbull, M. Preuss, N.P. Stevens, T.J. Marrow, J.Y. Buffiere, E. Boller, A. Groso, M. Stampanoni, X-ray microtomography studies of localised corrosion and transitions to stress corrosion cracking. Mater. Sci. Technol. 22(9), 1076–1085 (2006)

    Article  Google Scholar 

  80. S.S. Singh, J.J. Williams, T.J. Stannard, X. Xiao, F.D. Carlo, N. Chawla, Measurement of localized corrosion rates at inclusion particles in AA7075 by in situ three dimensional (3D) X-ray synchrotron tomography. Corros. Sci. 104, 330–335 (2016)

    Article  Google Scholar 

  81. S.P. Knight, M. Salagaras, A.M. Wythe, F. De Carlo, A.J. Davenport, A.R. Trueman, In situ X-ray tomography of intergranular corrosion of 2024 and 7050 aluminium alloys. Corros. Sci. 52(12), 3855–3860 (2010)

    Article  Google Scholar 

  82. T.J. Marrow, J.Y. Buffiere, P.J. Withers, G. Johnson, D. Engelberg, High resolution X-ray tomography of short fatigue crack nucleation in austempered ductile cast iron. Int. J. Fatigue 26(7), 717–725 (2004)

    Article  Google Scholar 

  83. F. Eckermann, T. Suter, P.J. Uggowitzer, A. Afseth, A.J. Davenport, B.J. Connolly, M.H. Larsen, F.D. Carlo, P. Schmutz, In situ monitoring of corrosion processes within the bulk of AlMgSi alloys using X-ray microtomography. Corros. Sci. 50(12), 3455–3466 (2008)

    Article  Google Scholar 

  84. S.S. Singh, J.J. Williams, P. Hruby, X. Xiao, F. De Carlo, N. Chawla, In situ experimental techniques to study the mechanical behavior of materials using X-ray synchrotron tomography. Integr. Mater. Manuf. Innov. 3(1), 9 (2014)

    Article  Google Scholar 

  85. S.M. Ghahari, A.J. Davenport, T. Rayment, T. Suter, J.-P. Tinnes, C. Padovani, J.A. Hammons, M. Stampanoni, F. Marone, R. Mokso, In situ synchrotron X-ray micro-tomography study of pitting corrosion in stainless steel. Corros. Sci. 53(9), 2684–2687 (2011)

    Article  Google Scholar 

  86. J.C. Andrews, B.M. Weckhuysen, Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work. ChemPhysChem 14(16), 3655–3666 (2013)

    Article  Google Scholar 

  87. L. Salvo, M. Suéry, A. Marmottant, N. Limodin, D. Bernard, 3D imaging in material science: application of X-ray tomography. C R Phys. 11(9–10), 641–649 (2010)

    Article  ADS  Google Scholar 

  88. K.A. Mohan, S.V. Venkatakrishnan, J.W. Gibbs, E.B. Gulsoy, X. Xiao, M. De Graef, P.W. Voorhees, C.A. Bouman, TIMBIR: a method for time-space reconstruction from interlaced views. IEEE Trans. Comput. Imaging (99), 1–1 (2015)

    Google Scholar 

  89. P. Viot, D. Bernard, E. Plougonven, Polymeric foam deformation under dynamic loading by the use of the microtomographic technique. J. Mater. Sci. 42(17), 7202–7213 (2007)

    Article  ADS  Google Scholar 

  90. T.B. Sercombe, X. Xu, V.J. Challis, R. Green, S. Yue, Z. Zhang, P.D. Lee, Failure modes in high strength and stiffness to weight scaffolds produced by selective laser melting. Mater. Des. 67, 501–508 (2015)

    Article  Google Scholar 

  91. S.R. Stock, X-ray microtomography of materials. Int. Mater. Rev. 44(4), 141–164 (1999)

    Article  Google Scholar 

  92. A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001), p. 323

    Google Scholar 

  93. M.G.R. Sause, Computed Tomography. Springer Series in Materials Science (Springer, 2016), vol. 242

    Google Scholar 

  94. D. Bellet, B. Gorges, A. Dallery, P. Bernard, E. Pereiro, J. Baruchel, A 1300 K furnace for in situ X-ray microtomography. J. Appl. Crystallogr. 36(2), 366–367 (2003)

    Article  Google Scholar 

  95. J.Y. Buffiere, E. Maire, J. Adrien, J.P. Masse, E. Boller, In situ experiments with X-ray tomography: an attractive tool for experimental mechanics. Exp. Mech. 50(3), 289–305 (2010)

    Article  Google Scholar 

  96. F. De Carlo, X. Xiao, B. Tieman, X-ray tomography system, automation and remote access at beamline 2-BM of the Advanced Photon Source, in Proceedings of SPIE (2006), p. 63180K

    Google Scholar 

  97. R. Mokso, F. Marone, M. Stampanoni, Real time tomography at the swiss light source. AIP Conf. Proc. 1234(1), 87–90 (2010)

    Article  ADS  Google Scholar 

  98. M. Beister, D. Kolditz, W.A. Kalender, Iterative reconstruction methods in X-ray CT. Physica Med. 28(2), 94–108 (2012)

    Article  Google Scholar 

  99. D. Gursoy, F. De Carlo, X. Xiao, C. Jacobsen, TomoPy: a framework for the analysis of synchrotron tomographic data. J. Synchrotron Radiat. 21(5), 1188–1193 (2014)

    Article  Google Scholar 

  100. R.A. Brooks, G. Di Chiro, Beam hardening in X-ray reconstructive tomography. Phys. Med. Biol. 21, 390–398 (1976)

    Article  Google Scholar 

  101. R.A. Ketcham, W.D. Carlson, Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput. Geosci. 27, 381–400 (2001)

    Article  ADS  Google Scholar 

  102. W. Zbijewski, F. Beekman, Characterization and suppression of edge and aliasing artefacts in iterative X-ray CT reconstruction. Phys. Med. Biol. 49, 145–157 (2004)

    Article  Google Scholar 

  103. K.A. Mohan, S.V. Venkatakrishnan, L.F. Drummy, J. Simmons, D.Y. Parkinson, C.A. Bouman, Model-based iterative reconstruction for synchrotron X-ray tomography, in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4–9 May 2014 (2014), pp. 6909–6913

    Google Scholar 

  104. S. Soltani, M.S. Andersen, P.C. Hansen, Tomographic image reconstruction using training images. J. Comput. Appl. Math. 313, 243–258 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  105. A. Rosset, L. Spadola, O. Ratib, OsiriX: an open-source software for navigating in multidimensional DICOM images. J. Digit. Imaging 17(3), 205–216 (2004)

    Article  Google Scholar 

  106. E.R. Tufte, Visual Explanations Images and Quantities, Evidence and Narrative, 2nd edn. (Graphics Press, Chesire CT, 1997)

    MATH  Google Scholar 

  107. B.M. Patterson, C.E. Hamilton, Dimensional standard for micro X-ray computed tomography. Anal. Chem. 82(20), 8537–8543 (2010)

    Article  Google Scholar 

  108. J. Weickert, B.M.T.H. Romeny, M.A. Viergever, Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3), 398–410 (1998)

    Article  ADS  Google Scholar 

  109. P. Iassonov, T. Gebrenegus, M. Tuller, Segmentation of X-ray computed tomography images of porous materials: a crucial step for characterization and quantitative analysis of pore structures. Water Resources Res. 45(9), n/a–n/a (2009)

    Google Scholar 

  110. M. Freyer, A. Ale, R. Schulz, M. Zientkowska, V. Ntziachristos, K.H. Englmeier, Fast automatic segmentation of anatomical structures in X-ray computed tomography images to improve fluorescence molecular tomography reconstruction. J. Biomed. Opt. 15(3), 036006 (2010)

    Article  ADS  Google Scholar 

  111. M. Andrew, S. Bhattiprolu, D. Butnaru, J. Correa, The usage of modern data science in segmentation and classification: machine learning and microscopy. Microsc. Microanal. 23(S1), 156–157 (2017)

    Article  ADS  Google Scholar 

  112. N. Piche, I. Bouchard, M. Marsh, Dragonfly segmentation trainer—a general and user-friendly machine learning image segmentation solution. Microsc. Microanal. 23(S1), 132–133 (2017)

    Article  ADS  Google Scholar 

  113. A.E. Scott, I. Sinclair, S.M. Spearing, A. Thionnet, A.R. Bunsell, Damage accumulation in a carbon/epoxy composite: Comparison between a multiscale model and computed tomography experimental results. Compos. A Appl. Sci. Manuf. 43(9), 1514–1522 (2012)

    Article  Google Scholar 

  114. G. Geandier, A. Hazotte, S. Denis, A. Mocellin, E. Maire, Microstructural analysis of alumina chromium composites by X-ray tomography and 3-D finite element simulation of thermal stresses. Scripta Mater. 48(8), 1219–1224 (2003)

    Article  Google Scholar 

  115. C. Petit, E. Maire, S. Meille, J. Adrien, Two-scale study of the fracture of an aluminum foam by X-ray tomography and finite element modeling. Mater. Des. 120, 117–127 (2017)

    Article  Google Scholar 

  116. S. Gaitanaros, S. Kyriakides, A.M. Kraynik, On the crushing response of random open-cell foams. Int. J. Solids Struct. 49(19–20), 2733–2743 (2012)

    Article  Google Scholar 

  117. B.M. Patterson, K. Henderson, Z. Smith, D. Zhang, P. Giguere, Application of micro X-ray tomography to in-situ foam compression and numerical modeling. Microsc. Anal. 26(2) (2012)

    Google Scholar 

  118. J.Y. Buffiere, P. Cloetens, W. Ludwig, E. Maire, L. Salvo, In situ X-ray tomography studies of microstructural evolution combined with 3D modeling. MRS Bull. 33, 611–619 (2008)

    Article  Google Scholar 

  119. M. Zimmermann, M. Carrard, W. Kurz, Rapid solidification of Al-Cu eutectic alloy by laser remelting. Acta Metall. 37(12), 3305–3313 (1989)

    Article  Google Scholar 

  120. D.P. Finegan, M. Scheel, J.B. Robinson, B. Tjaden, I. Hunt, T.J. Mason, J. Millichamp, M. Di Michiel, G.J. Offer, G. Hinds, D.J.L. Brett, P.R. Shearing, In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 6, 6924 (2015)

    Article  Google Scholar 

  121. Y. Liu, A.M. Kiss, D.H. Larsson, F. Yang, P. Pianetta, To get the most out of high resolution X-ray tomography: a review of the post-reconstruction analysis. Spectrochim. Acta Part B 117, 29–41 (2016)

    Article  ADS  Google Scholar 

  122. N.L. Cordes, K. Henderson, B.M. Patterson, A route to integrating dynamic 4D X-ray computed tomography and machine learning to model material performance. Microsc. Microanal. 23(S1), 144–145 (2017)

    Article  ADS  Google Scholar 

  123. B.M. Patterson, J.P. Escobedo-Diaz, D. Dennis-Koller, E.K. Cerreta, Dimensional quantification of embedded voids or objects in three dimensions using X-ray tomography. Microsc. Microanal. 18(2), 390–398 (2012)

    Article  ADS  Google Scholar 

  124. G. Loughnane, M. Groeber, M. Uchic, M. Shah, R. Srinivasan, R. Grandhi, Modeling the effect of voxel resolution on the accuracy of phantom grain ensemble statistics. Mater. Charact. 90, 136–150 (2014)

    Article  Google Scholar 

  125. N.L. Cordes, Z.D. Smith, K. Henderson, J.C.E. Mertens, J.J. Williams, T. Stannard, X. Xiao, N. Chawla, B.M. Patterson, Applying pattern recognition to the analysis of X-ray computed tomography data of polymer foams. Microsc. Microanal. 22(S3), 104–105 (2016)

    Article  ADS  Google Scholar 

  126. E.J. Garboczi, Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: application to aggregates used in concrete. Cem. Concr. Res. 32(10), 1621–1638 (2002)

    Article  Google Scholar 

  127. N. Limodin, L. Salvo, M. Suery, M. DiMichiel, In situ Investigation by X-ray tomography of the overall and local microstructural changes occuring during partial remelting of an Al-15.8wt.% Cu alloy. Acta Mater. 55, 3177–3191 (2007)

    Article  Google Scholar 

  128. A.D. Brown, Q. Pham, E.V. Fortin, P. Peralta, B.M. Patterson, J.P. Escobedo, E.K. Cerreta, S.N. Luo, D. Dennis-Koller, D. Byler, A. Koskelo, X. Xiao, Correlations among void shape distributions, dynamic damage mode, and loading kinetics. JOM 69(2), 198–206 (2017)

    Article  Google Scholar 

  129. J. Marrow, C. Reinhard, Y. Vertyagina, L. Saucedo-Mora, D. Collins, M. Mostafavi, 3D studies of damage by combined X-ray tomography and digital volume correlation. Procedia Mater. Sci. 3, 1554–1559 (2014)

    Article  Google Scholar 

  130. Z. Hu, H. Luo, S.G. Bardenhagen, C.R. Siviour, R.W. Armstrong, H. Lu, Internal deformation measurement of polymer bonded sugar in compression by digital volume correlation of in-situ tomography. Exp. Mech. 55(1), 289–300 (2015)

    Article  Google Scholar 

  131. R. Brault, A. Germaneau, J.C. Dupré, P. Doumalin, S. Mistou, M. Fazzini, In-situ analysis of laminated composite materials by X-ray micro-computed tomography and digital volume correlation. Exp. Mech. 53(7), 1143–1151 (2013)

    Article  Google Scholar 

  132. N.T. Redd, Hubble space telescope: pictures, facts and history. https://www.space.com/15892-hubble-space-telescope.html. Accessed 24 July 2017

  133. L.T. Beringer, A. Levinsen, D. Rowenhorst, G. Spanos, Building the 3D materials science community. JOM 68(5), 1274–1277 (2016)

    Google Scholar 

Download references

Funding

Funding for the work shown in this chapter are from a variety of LANL sources including: the Enhanced Surveillance Campaign (Tom Zocco), the Engineering Campaign (Antranik Siranosian), DSW (Jennifer Young), and Technology Maturation (Ryan Maupin) in support of the Materials of the Future.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Patterson .

Editor information

Editors and Affiliations

Additional information

Disclaimer: Commercial products are identified in this document in order to specify the experimental procedure and options adequately. Such identification is not intended to imply recommendation or endorsement by LANL or DOE, nor is it intended to imply that the products identified are necessarily the best available for the purpose.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patterson, B.M., Cordes, N.L., Henderson, K., Xiao, X., Chawla, N. (2018). Data Challenges of In Situ X-Ray Tomography for Materials Discovery and Characterization. In: Lookman, T., Eidenbenz, S., Alexander, F., Barnes, C. (eds) Materials Discovery and Design. Springer Series in Materials Science, vol 280. Springer, Cham. https://doi.org/10.1007/978-3-319-99465-9_6

Download citation

Publish with us

Policies and ethics