Skip to main content

Cerebellum and Internal Models

  • Living reference work entry
  • First Online:

Abstract

A powerful conceptual framework for the generation of fast, coordinated movements is based on the central nervous system implementing internal models. Internal models provide representations of the input-output properties of the motor apparatus. There are two general classes of internal models. Forward models use the commands for an action and information about the present state to predict the consequences of that action. Inverse models transform a desired outcome or effector state into the necessary commands to achieve that state. It has been widely hypothesized that the cerebellum acquires and stores internal models. Initially formulated to explain the cerebellum’s role in motor control, the concept has been extended to include internal models for tool use and cognitive processes. In patients with cerebellar dysfunction, the deficits can be attributed to a failure of internal models to generate the appropriate model commands and/or to accurately estimate the consequences of motor commands. Functional imaging and noninvasive stimulation studies in normal subjects provide further support for this hypothesis. Electrophysiological investigations have also examined whether neurons in the cerebellar cortex have the requisite signals compatible with either an inverse or forward internal model. In monkeys the simple spike discharge of Purkinje cells does not encode the requisite motor command signals required to be the output of an inverse dynamics model. However, Purkinje cell firing has many of the characteristics of a forward internal model. Recent work suggests the uniform architecture of the cerebellum implements internal models for non-motor functions.

This is a preview of subscription content, log in via an institution.

References

  • Adamaszek M, D’Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, Leggio M, Marien P, Molinari M, Moulton E, Orsi L, Van Overwalle F, Papadelis C, Priori A, Sacchetti B, Schutter DJ, Styliadis C, Verhoeven J (2017) Consensus paper: cerebellum and emotion. Cerebellum 16:552–576

    CAS  PubMed  Google Scholar 

  • Atkeson CG (1989) Learning arm kinematics and dynamics. Annu Rev Neurosci 12:157–183

    CAS  PubMed  Google Scholar 

  • Aumann TD, Rawson JA, Horne MK (1998) The relationship between monkey dentate cerebellar nucleus activity and kinematic parameters of wrist movement. Exp Brain Res 119:179–190

    CAS  PubMed  Google Scholar 

  • Bastian AJ (2006) Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol 16:645–649

    CAS  PubMed  Google Scholar 

  • Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, Leggio M, Mattingley JB, Molinari M, Moulton EA, Paulin MG, Pavlova MA, Schmahmann JD, Sokolov AA (2015) Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum 14:197–220

    PubMed  Google Scholar 

  • Bava A, Grimm RJ, Rushmer DS (1983) Fastigial unit activity during voluntary movement in primates. Brain Res 288:371–374

    CAS  PubMed  Google Scholar 

  • Bhanpuri NH, Okamura AM, Bastian AJ (2012) Active force perception depends on cerebellar function. J Neurophysiol 107:1612–1620

    PubMed  Google Scholar 

  • Bhanpuri NH, Okamura AM, Bastian AJ (2013) Predictive modeling by the cerebellum improves proprioception. J Neurosci 33:14301–14306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bo J, Block HJ, Clark JE, Bastian AJ (2008) A cerebellar deficit in sensorimotor prediction explains movement timing variability. J Neurophysiol 100:2825–2832

    PubMed  PubMed Central  Google Scholar 

  • Boehringer A, Macher K, Dukart J, Villringer A, Pleger B (2013) Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul 6:649–653

    PubMed  Google Scholar 

  • Bond KM, Taylor JA (2015) Flexible explicit but rigid implicit learning in a visuomotor adaptation task. J Neurophysiol 113:3836–3849

    PubMed  PubMed Central  Google Scholar 

  • Brooks JX, Cullen KE (2013) The primate cerebellum selectively encodes unexpected self-motion. Curr Biol 23:947–955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks JX, Carriot J, Cullen KE (2015) Learning to expect the unexpected: rapid updating in primate cerebellum during voluntary self-motion. Nat Neurosci 18:1310–1317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burk K (2007) Cognition in hereditary ataxia. Cerebellum 6:280–286

    PubMed  Google Scholar 

  • Bursztyn LL, Ganesh G, Imamizu H, Kawato M, Flanagan JR (2006) Neural correlates of internal-model loading. Curr Biol 16:2440–2445

    CAS  PubMed  Google Scholar 

  • Butcher PA, Ivry RB, Kuo SH, Rydz D, Krakauer JW, Taylor JA (2017) The cerebellum does more than sensory prediction error-based learning in sensorimotor adaptation tasks. J Neurophysiol 118:1622–1636

    PubMed  PubMed Central  Google Scholar 

  • Cerminara NL, Apps R, Marple-Horvat DE (2009) An internal model of a moving visual target in the lateral cerebellum. J Physiol 587:429–442

    CAS  PubMed  Google Scholar 

  • Chapman CE, Spidalieri G, Lamarre Y (1986) Activity of dentate neurons during arm movements triggered by visual, auditory, and somesthetic stimuli in the monkey. J Neurophysiol 55:203–226

    CAS  PubMed  Google Scholar 

  • Charles SK, Okamura AM, Bastian AJ (2013) Does a basic deficit in force control underlie cerebellar ataxia? J Neurophysiol 109:1107–1116

    PubMed  Google Scholar 

  • Coltz JD, Johnson MT, Ebner TJ (1999) Cerebellar Purkinje cell simple spike discharge encodes movement velocity in primates during visuomotor arm tracking. J Neurosci 19:1782–1803

    CAS  PubMed  Google Scholar 

  • D’Mello AM, Turkeltaub PE, Stoodley CJ (2017) Cerebellar tDCS modulates neural circuits during semantic prediction: a combined tDCS-fMRI study. J Neurosci 37:1604–1613

    PubMed  PubMed Central  Google Scholar 

  • Dickman JD, Angelaki DE, Correia MJ (1991) Response properties of gerbil otolith afferents to small angle pitch and roll tilts. Brain Res 556:303–310

    CAS  PubMed  Google Scholar 

  • Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R (2005) Neural correlates of reach errors. J Neurosci 25:9919–9931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diedrichsen J, Criscimagna-Hemminger SE, Shadmehr R (2007) Dissociating timing and coordination as functions of the cerebellum. J Neurosci 27:6291–6301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doya K (1999) What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw 12:961–974

    CAS  PubMed  Google Scholar 

  • Dugue GP, Tihy M, Gourevitch B, Lena C (2017) Cerebellar re-encoding of self-generated head movements. elife 6:e26179

    PubMed  PubMed Central  Google Scholar 

  • Ebner TJ, Pasalar S (2008) Cerebellum predicts the future motor state. Cerebellum 7:583–588

    PubMed  PubMed Central  Google Scholar 

  • Ebner TJ, Hewitt A, Popa LS (2011) What features of movements are encoded in the discharge of cerebellar neurons during limb movements? Cerebellum 10:683–693

    PubMed  PubMed Central  Google Scholar 

  • Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin

    Google Scholar 

  • Espinoza E, Smith AM (1990) Purkinje cell simple spike activity during grasping and lifting objects of different textures and weights. J Neurophysiol 64:698–714

    CAS  PubMed  Google Scholar 

  • Fernandez C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J Neurophysiol 39:970–984

    CAS  PubMed  Google Scholar 

  • Fernandez C, Goldberg JM, Abend WK (1972) Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J Neurophysiol 35:978–987

    CAS  PubMed  Google Scholar 

  • Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, Zago S, Barbieri S, Priori A (2008) Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci 20:1687–1697

    CAS  PubMed  Google Scholar 

  • Fiez JA, Petersen SE, Cheney MK, Raichle ME (1992) Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain 115(Pt 1):155–178

    PubMed  Google Scholar 

  • Flament D, Ellermann JM, Kim S-G, Ugurbil K, Ebner TJ (1996) Functional magnetic resonance imaging of cerebellar activation during the learning of a visuomotor dissociation task. Hum Brain Map 4:210–226

    CAS  Google Scholar 

  • Flanagan JR, Wing AM (1997) The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 17:1519–1528

    CAS  PubMed  Google Scholar 

  • Fortier PA, Kalaska JF, Smith AM (1989) Cerebellar neuronal activity related to whole-arm reaching movements in the monkey. J Neurophysiol 62:198–211

    CAS  PubMed  Google Scholar 

  • Fu QG, Flament D, Coltz JD, Ebner TJ (1997) Relationship of cerebellar Purkinje cell simple spike discharge to movement kinematics in the monkey. J Neurophysiol 78:478–491

    CAS  PubMed  Google Scholar 

  • Gaveau J, Berret B, Angelaki DE, Papaxanthis C (2016) Direction-dependent arm kinematics reveal optimal integration of gravity cues. Elife 5:e16394

    PubMed  PubMed Central  Google Scholar 

  • Golla H, Tziridis K, Haarmeier T, Catz N, Barash S, Thier P (2008) Reduced saccadic resilience and impaired saccadic adaptation due to cerebellar disease. Eur J Neurosci 27:132–144

    PubMed  Google Scholar 

  • Gomi H, Shidara M, Takemura A, Inoue Y, Kawano K, Kawato M (1998) Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys I. Simple spikes. J Neurophysiol 80:818–831

    CAS  PubMed  Google Scholar 

  • Goodkin HP, Thach WT (2003) Cerebellar control of constrained and unconstrained movements. II. EMG and nuclear activity. J Neurophysiol 89:896–908

    CAS  PubMed  Google Scholar 

  • Grafton ST, Schmitt P, Van HJ, Diedrichsen J (2008) Neural substrates of visuomotor learning based on improved feedback control and prediction. Neuroimage 39:1383–1395

    PubMed  Google Scholar 

  • Graydon FX, Friston KJ, Thomas CG, Brooks VB, Menon RS (2005) Learning-related fMRI activation associated with a rotational visuo-motor transformation. Brain Res Cogn Brain Res 22:373–383

    PubMed  Google Scholar 

  • Gribble PL, Ostry DJ (1999) Compensation for interaction torques during single- and multijoint limb movement. J Neurophysiol 82:2310–2326

    CAS  PubMed  Google Scholar 

  • Guediche S, Fiez JA, Holt LL (2016) Adaptive plasticity in speech perception: effects of external information and internal predictions. J Exp Psychol Hum Percept Perform 42:1048–1059

    PubMed  PubMed Central  Google Scholar 

  • Hayter AL, Langdon DW, Ramnani N (2007) Cerebellar contributions to working memory. Neuroimage 36:943–954

    CAS  PubMed  Google Scholar 

  • Hewitt A, Popa LS, Pasalar S, Hendrix CM, Ebner TJ (2011) Representation of limb kinematics in Purkinje cell simple spike discharge is conserved across multiple tasks. J Neurophysiol 106:2232–2247

    PubMed  PubMed Central  Google Scholar 

  • Higuchi S, Imamizu H, Kawato M (2007) Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex 43:350–358

    PubMed  Google Scholar 

  • Holdefer RN, Miller LE (2009) Dynamic correspondence between Purkinje cell discharge and forelimb muscle activity during reaching. Brain Res 1295:67–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Honda T, Hirashima M, Nozaki D (2012) Habituation to feedback delay restores degraded visuomotor adaptation by altering both sensory prediction error and the sensitivity of adaptation to the error. Front Psychol 3:540

    PubMed  PubMed Central  Google Scholar 

  • Horak FB, Diener HC (1994) Cerebellar control of postural scaling and central set in stance. J Neurophysiol 72:479–493

    CAS  PubMed  Google Scholar 

  • Huang CC, Sugino K, Shima Y, Guo C, Bai S, Mensh BD, Nelson SB, Hantman AW (2013) Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. Elife 2:e00400

    PubMed  PubMed Central  Google Scholar 

  • Imamizu H, Kawato M (2009) Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res 73:527–544

    PubMed  Google Scholar 

  • Imamizu H, Kawato M (2010) Cerebellar internal models: implications for the dexterous use of tools. Cerebellum. Epub ahead of print 11(2) 325:35

    Google Scholar 

  • Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshioka T, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–195

    CAS  PubMed  Google Scholar 

  • Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M (2003) Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci 100:5461–5466

    CAS  PubMed  Google Scholar 

  • Imamizu H, Kuroda T, Yoshioka T, Kawato M (2004) Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. J Neurosci 24:1173–1181

    CAS  PubMed  Google Scholar 

  • Imamizu H, Higuchi S, Toda A, Kawato M (2007) Reorganization of brain activity for multiple internal models after short but intensive training. Cortex 43:338–349

    PubMed  Google Scholar 

  • Ishikawa T, Tomatsu S, Tsunoda Y, Hoffman DS, Kakei S (2014) Mossy fibers in the cerebellar hemisphere show delay activity in a delayed response task. Neurosci Res 87:84–89

    PubMed  Google Scholar 

  • Ishikawa T, Shimuta M, Hausser M (2015) Multimodal sensory integration in single cerebellar granule cells in vivo. elife 4:e12916

    PubMed  PubMed Central  Google Scholar 

  • Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9:304–313

    CAS  PubMed  Google Scholar 

  • Izawa J, Criscimagna-Hemminger SE, Shadmehr R (2012) Cerebellar contributions to reach adaptation and learning sensory consequences of action. J Neurosci 32:4230–4239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson RS, Cole KJ (1992) Sensory-motor coordination during grasping and manipulative actions. Curr Opin Neurobiol 2:815–823

    CAS  PubMed  Google Scholar 

  • Jordan MI, Rumelhart DE (1992) Forward models: supervised learning with a distal teacher. Cogn Sci 16:307–354

    Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    CAS  PubMed  Google Scholar 

  • Keller EL, Robinson DA (1971) Absence of a stretch reflex in extraocular muscles of the monkey. J Neurophysiol 34:908–919

    CAS  PubMed  Google Scholar 

  • Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–8444

    CAS  PubMed  Google Scholar 

  • Kim SG, Ugurbil K, Strick PL (1994) Activation of a cerebellar output nucleus during cognitive processing. Science 265:949–951

    CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kawano K, Takemura A, Inoue Y, Kitama T, Gomi H, Kawato M (1998) Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes. J Neurophysiol 80:832–848

    CAS  PubMed  Google Scholar 

  • Koziol LF, Budding DE, Chidekel D (2012) From movement to thought: executive function, embodied cognition, and the cerebellum. Cerebellum 11:505–525

    PubMed  Google Scholar 

  • Krakauer JW, Ghilardi MF, Mentis M, Barnes A, Veytsman M, Eidelberg D, Ghez C (2004) Differential cortical and subcortical activations in learning rotations and gains for reaching: a PET study. J Neurophysiol 91:924–933

    PubMed  Google Scholar 

  • Lackner JR, Dizio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72:299–313

    CAS  PubMed  Google Scholar 

  • Lackner JR, Dizio P (1998) Gravitoinertial force background level affects adaptation to coriolis force perturbations of reaching movements. J Neurophysiol 80:546–553

    CAS  PubMed  Google Scholar 

  • Lacquaniti F, Bosco G, Indovina I, La SB, Maffei V, Moscatelli A, Zago M (2013) Visual gravitational motion and the vestibular system in humans. Front Integr Neurosci 7:101

    PubMed  PubMed Central  Google Scholar 

  • Lang CE, Bastian AJ (1999) Cerebellar subjects show impaired adaptation of anticipatory EMG during catching. J Neurophysiol 82:2108–2119

    CAS  PubMed  Google Scholar 

  • Laurens J, Meng H, Angelaki DE (2013a) Computation of linear acceleration through an internal model in the macaque cerebellum. Nat Neurosci 16:1701–1708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laurens J, Meng H, Angelaki DE (2013b) Neural representation of orientation relative to gravity in the macaque cerebellum. Neuron 80:1508–1518

    CAS  Google Scholar 

  • Leiner HC, Leiner AL, Dow RS (1986) Does the cerebellum contribute to mental skills? Behav Neurosci 100:443–454

    CAS  PubMed  Google Scholar 

  • Leiner HC, Leiner AL, Dow RS (1993) Cognitive and language functions of the human cerebellum. Trends Neurosci 16:444–447

    CAS  PubMed  Google Scholar 

  • Lesage E, Morgan BE, Olson AC, Meyer AS, Miall RC (2012) Cerebellar rTMS disrupts predictive language processing. Curr Biol 22:R794–R795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lesage E, Hansen PC, Miall RC (2017) Right lateral cerebellum represents linguistic predictability. J Neurosci 37:6231–6241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leung HC, Suh M, Kettner RE (2000) Cerebellar flocculus and paraflocculus Purkinje cell activity during circular pursuit in monkey. J Neurophysiol 83:13–30

    CAS  Google Scholar 

  • Lisberger SG (2009) Internal models of eye movement in the floccular complex of the monkey cerebellum. Neuroscience 162:763–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacKay WA (1988) Cerebellar nuclear activity in relation to simple movements. Exp Brain Res 71:47–58

    CAS  PubMed  Google Scholar 

  • Marple-Horvat DE, Stein JF (1987) Cerebellar neuronal activity related to arm movements in trained rhesus monkeys. J Physiol 394:351–366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain 119:1183–1198

    PubMed  Google Scholar 

  • Maschke M, Gomez CM, Ebner TJ, Konczak J (2004) Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophysiol 91:230–238

    PubMed  Google Scholar 

  • Mason CR, Hendrix CM, Ebner TJ (2006) Purkinje cells signal hand shape and grasp force during reach-to-grasp in the monkey. J Neurophysiol 95:144–158

    PubMed  Google Scholar 

  • Mazzoni P, Krakauer JW (2006) An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci 26:3642–3645

    CAS  PubMed  Google Scholar 

  • McDougle SD, Bond KM, Taylor JA (2015) Explicit and implicit processes constitute the fast and slow processes of sensorimotor learning. J Neurosci 35:9568–9579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medina JF, Lisberger SG (2007) Variation, signal, and noise in cerebellar sensory-motor processing for smooth-pursuit eye movements. J Neurosci 27:6832–6842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medina JF, Lisberger SG (2009) Encoding and decoding of learned smooth pursuit eye movements in the floccular complex of the monkey cerebellum. J Neurophysiol 102:2039–2054

    PubMed  PubMed Central  Google Scholar 

  • Meng H, Laurens J, Blazquez PM, Angelaki DE (2015) In vivo properties of cerebellar interneurons in the macaque caudal vestibular vermis. J Physiol 593:321–330

    CAS  Google Scholar 

  • Merfeld DM, Zupan L, Peterka RJ (1999) Humans use internal models to estimate gravity and linear acceleration. Nature 398:615–618

    CAS  PubMed  Google Scholar 

  • Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279

    PubMed  Google Scholar 

  • Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a Smith predictor? J Mot Behav 25:203–216

    CAS  Google Scholar 

  • Miall RC, Reckess GZ, Imamizu H (2001) The cerebellum coordinates eye and hand tracking movements. Nat Neurosci 4:638–644

    CAS  PubMed  Google Scholar 

  • Miall RC, Christensen LO, Cain O, Stanley J (2007) Disruption of state estimation in the human lateral cerebellum. PLoS Biol 5:e316

    PubMed  PubMed Central  Google Scholar 

  • Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:458–461

    CAS  PubMed  Google Scholar 

  • Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21:700–712

    CAS  PubMed  Google Scholar 

  • Moberget T, Gullesen EH, Andersson S, Ivry RB, Endestad T (2014) Generalized role for the cerebellum in encoding internal models: evidence from semantic processing. J Neurosci 34:2871–2878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morehead JR, Taylor JA, Parvin DE, Ivry RB (2017) Characteristics of implicit sensorimotor adaptation revealed by task-irrelevant clamped feedback. J Cogn Neurosci 29:1061–1074

    PubMed  PubMed Central  Google Scholar 

  • Morton SM, Bastian AJ (2006) Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 26:9107–9116

    CAS  PubMed  Google Scholar 

  • Noto CT, Robinson FR (2001) Visual error is the stimulus for saccade gain adaptation. Brain Res Cogn Brain Res 12:301–305

    CAS  PubMed  Google Scholar 

  • Nowak DA, Hermsdorfer J, Rost K, Timmann D, Topka H (2004) Predictive and reactive finger force control during catching in cerebellar degeneration. Cerebellum 3:227–235

    PubMed  Google Scholar 

  • Ostry DJ, Feldman AG (2003) A critical evaluation of the force control hypothesis in motor control. Exp Brain Res 153:275–288

    PubMed  Google Scholar 

  • Papaxanthis C, Pozzo T, Vinter A, Grishin A (1998) The representation of gravitational force during drawing movements of the arm. Exp Brain Res 120:233–242

    CAS  PubMed  Google Scholar 

  • Pasalar S, Roitman AV, Durfee WK, Ebner TJ (2006) Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nat Neurosci 9:1404–1411

    CAS  PubMed  Google Scholar 

  • Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME (1988) Positron emission tomographic studies of the processing of single words. J Cogn Neurosci 1(2):154–170

    Google Scholar 

  • Pigeon P, Bortolami SB, Dizio P, Lackner JR (2003) Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques. J Neurophysiol 89:276–289

    PubMed  Google Scholar 

  • Popa LS, Hewitt AL, Ebner TJ (2012) Predictive and feedback performance errors are signaled in the simple spike discharge of individual Purkinje cells. J Neurosci 32:15345–15358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popa LS, Hewitt AL, Ebner TJ (2013) Purkinje cell simple spike discharge encodes error signals consistent with a forward internal model. Cerebellum 12:331–333

    PubMed  PubMed Central  Google Scholar 

  • Popa LS, Hewitt AL, Ebner TJ (2014) The cerebellum for jocks and nerds alike. Front Syst Neurosci 8:1–13

    Google Scholar 

  • Popa LS, Streng ML, Hewitt AL, Ebner TJ (2015) The errors of our ways: understanding error representations in cerebellar-dependent motor learning. Cerebellum 15:93–103

    Google Scholar 

  • Popa LS, Streng ML, Ebner TJ (2016) Signaling of predictive and feedback information in Purkinje cell simple spike activity. In: Heck DH (ed) Neuronal codes of the cerebellum. Elsevier, New York, pp 1–25

    Google Scholar 

  • Popa LS, Streng ML, Ebner TJ (2017) Long-term predictive and feedback encoding of motor signals in the simple spike discharge of Purkinje cells. eNeuro 4

    Google Scholar 

  • Pope PA, Miall RC (2012) Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul 5:84–94

    PubMed  PubMed Central  Google Scholar 

  • Rabe K, Livne O, Gizewski ER, Aurich V, Beck A, Timmann D, Donchin O (2009) Adaptation to visuomotor rotation and force field perturbation is correlated to different brain areas in patients with cerebellar degeneration. J Neurophysiol 101:1961–1971

    CAS  PubMed  Google Scholar 

  • Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7:511–522

    CAS  PubMed  Google Scholar 

  • Reisman DS, Block HJ, Bastian AJ (2005) Interlimb coordination during locomotion: what can be adapted and stored? J Neurophysiol 94:2403–2415

    PubMed  Google Scholar 

  • Robinson DA (1975) Oculomotor control signals. In: Bachyrita P, Lennerstrand G (eds) Basic mechanisms of ocular motility and their clinical implications. Pergamon, Oxford, pp 337–374

    Google Scholar 

  • Roitman AV, Pasalar S, Johnson MT, Ebner TJ (2005) Position, direction of movement, and speed tuning of cerebellar Purkinje cells during circular manual tracking in monkey. J Neurosci 25:9244–9257

    CAS  PubMed  Google Scholar 

  • Runnqvist E, Bonnard M, Gauvin HS, Attarian S, Trebuchon A, Hartsuiker RJ, Alario FX (2016) Internal modeling of upcoming speech: a causal role of the right posterior cerebellum in non-motor aspects of language production. Cortex 81:203–214

    PubMed  Google Scholar 

  • Scarchilli K, Vercher JL (1999) The oculomanual coordination control center takes into account the mechanical properties of the arm. Exp Brain Res 124:42–52

    CAS  PubMed  Google Scholar 

  • Schieber MH, Thach WT (1985) Trained slow tracking. II. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons. J Neurophysiol 54:1228–1270

    CAS  PubMed  Google Scholar 

  • Schlerf JE, Ivry RB, Diedrichsen J (2012) Encoding of sensory prediction errors in the human cerebellum. J Neurosci 32:4913–4922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmahmann JD (1991) An emerging concept. The cerebellar contribution to higher function. Arch Neurol 48:1178–1187

    CAS  PubMed  Google Scholar 

  • Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378

    PubMed  Google Scholar 

  • Schmahmann JD (2010) The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20:236–260

    PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1989) Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol 289:53–73

    CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1991) Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. J Comp Neurol 308:224–248

    CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1997) Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci 17:438–458

    CAS  PubMed  Google Scholar 

  • Schweighofer N, Arbib MA, Kawato M (1998) Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control. Eur J Neurosci 10:86–94

    CAS  PubMed  Google Scholar 

  • Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277:821–825

    CAS  PubMed  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    CAS  PubMed  Google Scholar 

  • Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108

    CAS  PubMed  Google Scholar 

  • Shidara M, Kawano K, Gomi H, Kawato M (1993) Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature 365:50–52

    CAS  Google Scholar 

  • Smith AM, Bourbonnais D (1981) Neuronal activity in cerebellar cortex related to control of prehensile force. J Neurophysiol 45:286–303

    CAS  PubMed  Google Scholar 

  • Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93:2809–2821

    PubMed  Google Scholar 

  • Smith MA, Brandt J, Shadmehr R (2000) Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature 403:544–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soechting JF, Burton JE, Onoda N (1978) Relationships between sensory input, motor output and unit activity in interpositus and red nuclei during intentional movement. Brain Res 152:65–79

    CAS  PubMed  Google Scholar 

  • Streng ML, Popa LS, Ebner TJ (2017) Climbing fibers control Purkinje cell representations of behavior. J Neurosci 37:1997–2009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434

    CAS  PubMed  Google Scholar 

  • Synofzik M, Lindner A, Thier P (2008) The cerebellum updates predictions about the visual consequences of one’s behavior. Curr Biol 18:814–818

    CAS  PubMed  Google Scholar 

  • Takamuku S, Gomi H (2015) What you feel is what you see: inverse dynamics estimation underlies the resistive sensation of a delayed cursor. Proc Biol Sci 282

    Google Scholar 

  • Takikawa Y, Kawagoe R, Itoh H, Nakahara H, Hikosaka O (2002) Modulation of saccadic eye movements by predicted reward outcome. Exp Brain Res 142:284–291

    PubMed  Google Scholar 

  • Taylor JA, Ivry RB (2014) Cerebellar and prefrontal cortex contributions to adaptation, strategies, and reinforcement learning. Prog Brain Res 210:217–253

    PubMed  PubMed Central  Google Scholar 

  • Taylor JA, Klemfuss NM, Ivry RB (2010) An explicit strategy prevails when the cerebellum fails to compute movement errors. Cerebellum 9:580–586

    PubMed  PubMed Central  Google Scholar 

  • Taylor JA, Krakauer JW, Ivry RB (2014) Explicit and implicit contributions to learning in a sensorimotor adaptation task. J Neurosci 34:3023–3032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thach WT (1978) Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum. J Neurophysiol 41:654–676

    CAS  PubMed  Google Scholar 

  • Thach WT (2007) On the mechanism of cerebellar contributions to cognition. Cerebellum 6:163–167

    CAS  PubMed  Google Scholar 

  • Thoroughman KA, Shadmehr R (1999) Electromyographic correlates of learning an internal model of reaching movements. J Neurosci 19:8573–8588

    CAS  PubMed  Google Scholar 

  • Tomatsu S, Ishikawa T, Tsunoda Y, Lee J, Hoffman DS, Kakei S (2016) Information processing in the hemisphere of the cerebellar cortex for control of wrist movement. J Neurophysiol 115:255–270

    PubMed  Google Scholar 

  • Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98:54–62

    PubMed  Google Scholar 

  • van Kan PL, Gibson AR, Houk JC (1993a) Movement-related inputs to intermediate cerebellum of the monkey. J Neurophysiol 69:74–94

    PubMed  Google Scholar 

  • van Kan PL, Houk JC, Gibson AR (1993b) Output organization of intermediate cerebellum of the monkey. J Neurophysiol 69:57–73

    PubMed  Google Scholar 

  • Wallman J, Fuchs AF (1998) Saccadic gain modification: visual error drives motor adaptation. J Neurophysiol 80:2405–2416

    CAS  PubMed  Google Scholar 

  • Weiner MJ, Hallett M, Funkenstein HH (1983) Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology 33:766–772

    CAS  PubMed  Google Scholar 

  • Wetts R, Kalaska JF, Smith AM (1985) Cerebellar nuclear cell activity during antagonist cocontraction and reciprocal inhibition of forearm muscles. J Neurophysiol 54:231–244

    CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3(Suppl):1212–1217

    CAS  PubMed  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11:1317–1329

    CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882

    CAS  PubMed  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347

    CAS  PubMed  Google Scholar 

  • Xu-Wilson M, Chen-Harris H, Zee DS, Shadmehr R (2009) Cerebellar contributions to adaptive control of saccades in humans. J Neurosci 29:12930–12939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, Angelaki DE (2007) Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 54:973–985

    CAS  Google Scholar 

  • Yamamoto K, Kawato M, Kotosaka S, Kitazawa S (2007) Encoding of movement dynamics by Purkinje cell simple spike activity during fast arm movements under resistive and assistive force fields. J Neurophysiol 97:1588–1599

    PubMed  Google Scholar 

  • Yavari F, Mahdavi S, Towhidkhah F, hmadi-Pajouh MA, Ekhtiari H, Darainy M (2016) Cerebellum as a forward but not inverse model in visuomotor adaptation task: a tDCS-based and modeling study. Exp Brain Res 234:997–1012

    PubMed  Google Scholar 

  • Yu W, Krook-Magnuson E (2015) Cognitive collaborations: bidirectional functional connectivity between the cerebellum and the hippocampus. Front Syst Neurosci 9:177

    PubMed  PubMed Central  Google Scholar 

  • Yuan Q, Qiu DL, Weber JT, Hansel C, Knopfel T (2007) Climbing fiber-triggered metabotropic slow potentials enhance dendritic calcium transients and simple spike firing in cerebellar Purkinje cells. Mol Cell Neurosci 35:596–603

    CAS  PubMed  Google Scholar 

  • Zago M, Bosco G, Maffei V, Iosa M, Ivanenko YP, Lacquaniti F (2004) Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions. J Neurophysiol 91:1620–1634

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Ebner .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Popa, L.S., Ebner, T.J. (2019). Cerebellum and Internal Models. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_56-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_56-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics