Skip to main content

Cerebellar Control of Speech and Song

  • Living reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

The cerebellum is intimately involved with aspects of control of speech and song production, as well as perception. This chapter will review some of the diverse set of findings demonstrating the nature of this involvement. In explaining these findings, a considerable number of hypotheses have been formulated with regard to the underlying function of the cerebellum. These processes include, but are not restricted to, sharpening sensory input, temporal coordination, as well as instantiation of internal models that simulate the input–output characteristics of a specific system (Bower and Parsons, Sci Am 289:50–57, 2003; Parsons et al., Brain Res 1303:84–96, 2009; Ackermann, Trends Neurosci 31(6):265–272, 2008; Kent et al., J Phonetics 28:273–302, 2000; Callan et al., Neuroimage 31:1327–1342, 2006; Cerebellum 6:321–327, 2007). The cerebellum is often recognized as a predictive machine, including for speech, and as a coordinator for articulatory gestures. There is growing evidence that the cerebellum is a masterpiece for speech and language perception, motor speech planning, verbal working memory, phonological and semantic verbal fluency, and dynamics of language production. By reviewing the literature of the involvement of the cerebellum with respect to speech and song processing, it is the goal of this chapter to clarify general underlying cerebellar functions that are pertinent to these hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ackermann H (2008) Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci 31(6):265–272

    Article  CAS  PubMed  Google Scholar 

  • Ackermann H, Riecker A (2004) The contribution of the insula to motor aspects of speech production: a review and a hypothesis. Brain Lang 89(2):320–328

    Article  PubMed  Google Scholar 

  • Ackermann H, Graber S, Hertrich I, Daum I (1997) Categorical perception in cerebellar disorders. Brain Lang 60:323–331

    Article  CAS  PubMed  Google Scholar 

  • Ackermann H, Mathiak K, Ivry R (2004) Temporal organization of “internal speech” as a basis for cerebellar modulation of cognitive functions. Behav Cogn Neurosci Rev 3(1):14–22

    Article  PubMed  Google Scholar 

  • Adamaszek M, Kirkby KC (2016) Cerebellum and grammar processing. In: Mariën P, Manto M (eds) The linguistic cerebellum. Academic, London, pp 81–105

    Chapter  Google Scholar 

  • Bohland J, Guenther F (2006) An fMRI investigation of syllable sequence production. NeuroImage 32:821–841

    Article  PubMed  Google Scholar 

  • Bower JM, Parsons LM (2003) Rethinking the lesser brain. Sci Am 289:50–57

    Article  PubMed  Google Scholar 

  • Brown S, Martinez MJ, Hodges DA, Fox PR, Parsons LM (2004a) The song system of the human brain. Cogn Brain Res 20:363–375

    Article  Google Scholar 

  • Brown S, Martinez MJ, Parsons LM (2004b) Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport 15(13):2033–2037

    Article  PubMed  Google Scholar 

  • Brown S, Ingham R, Ingham J, Laird A, Fox P (2005) Stuttered and fluent speech production: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp 25:105–117

    Article  PubMed  PubMed Central  Google Scholar 

  • Callan DE, Tajima K, Callan AM, Kubo R, Masaki S, Akahane-Yamada R (2003) Learning-induced neural plasticity associated with improved identification performance after training of a difficult second-language phonetic contrast. NeuroImage 19:113–124

    Article  PubMed  Google Scholar 

  • Callan DE, Jones JA, Callan AM, Akahane-Yamada R (2004) Phonetic perceptual identification by native- and second-language speakers differentially activates brain regions involved with acoustic phonetic processing and those involved with articulatory-auditory/orosensory internal models. NeuroImage 22:1182–1194

    Article  PubMed  Google Scholar 

  • Callan DE, Tsytsarev V, Hanakawa T, Callan AM, Katsuhara M, Fukuyama H, Turner R (2006) Song and speech: brain regions involved with perception and covert production. NeuroImage 31:1327–1342

    Article  PubMed  Google Scholar 

  • Callan D, Kawato M, Parsons L, Turner R (2007) Speech and song: the role of the cerebellum. Cerebellum 6:321–327

    Article  PubMed  Google Scholar 

  • Callan D, Callan A, Gamez M, Sato MA, Kawato M (2010) Premotor cortex mediates perceptual performance. NeuroImage 51:844–858

    Article  PubMed  Google Scholar 

  • Casini L, Ivry R (1999) Effects of divided attention on temporal processing in patients with lesions of the cerebellum or frontal lobe. Neuropsychology 13:10–21

    Article  CAS  PubMed  Google Scholar 

  • Chee MW, Tan EW, Thiel T (1999) Mandarin and English single word processing studied with functional magnetic resonance imaging. J Neurosci 19:3050–3056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daly DD, Love JG (1958) Akinetic mutism. Neurology 8(3):238–242

    Article  CAS  PubMed  Google Scholar 

  • Desmond J, Fiez J (1998) Neuroimaging studies of the cerebellum: language, learning and memory. Trends Cogn Sci 2(9):355–362

    Article  CAS  PubMed  Google Scholar 

  • Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH (1997) Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci 17(24):9675–9685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy J (2004) Dysarthrias: characteristics and classification. In: Kent R (ed) The MIT encyclopedia of communication disorders. MIT Press, Boston, pp 126–129

    Google Scholar 

  • Dum RP, Strick PL (2003) An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol 89:634–639

    Article  PubMed  Google Scholar 

  • Durisko C, Fiez JA (2010) Functional activation in the cerebellum during working memory and simple speech tasks. Cortex 46(7):896–906

    Article  PubMed  Google Scholar 

  • Edelman G (1987) Neural Darwinism: the theory of neuronal group selection. Basic Books, New York

    Google Scholar 

  • Edelman G (1989) The remembered present: a biological theory of consciousness. Basic Books, New York

    Google Scholar 

  • Gaab N, Gaser C, Zaehle T, Jancke L, Schlaug G (2003) Functional anatomy of pitch memory – an fMRI study with sparse temporal sampling. NeuroImage 19:1417–1426

    Article  PubMed  Google Scholar 

  • Gasparini M, Di Piero V, Ciccarelli O, Cacioppo MM, Pantano P, Lenzi GL (1999) Linguistic impairment after right cerebellar stroke: a case report. Eur J Neurol 6(3):353–356

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Tourville J, Guenther F (2008) A neuroimaging study of premotor lateralization and cerebellar involvement in the production of phonemes and syllables. J Speech Lang Hear Res 51(5):1183–1202

    Article  PubMed  Google Scholar 

  • Gomi H, Ito T, Murano EZ, Honda M (2002) Compensatory articulation during bilabial fricative production by regulating muscle stiffness. J Phon 30(3):261–279

    Article  Google Scholar 

  • Griffiths T, Johnsrude I, Dean J, Green G (1999) A common neural substrate for analysis of pitch and duration pattern in segmented sound? Neuroreport 10:3825–3830

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi G, Manto M (2012) Topography of cerebellar deficits in humans. Cerebellum 11(2):336–351

    Article  PubMed  Google Scholar 

  • Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M (2001) Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp 13:55–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guell X, Hoche F, Schmahmann JD (2015) Metalinguistic deficits in patients with cerebellar dysfunction: empirical support for the dysmetria of thought theory. Cerebellum 14(1):50–58

    Article  PubMed  Google Scholar 

  • Holmes G (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40:461–535

    Article  Google Scholar 

  • Hubrich-Ungureanu P, Kaemmerer N, Henn FA, Braus DF (2002) Lateralized organization of the cerebellum in a silent verbal fluency task: a functional magnetic resonance imaging study in healthy volunteers. Neurosci Lett 319(2):91–94

    Article  CAS  PubMed  Google Scholar 

  • Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshioka T, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–195

    Article  CAS  PubMed  Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  • Ito T, Gomi H, Honda M (2004) Dynamical simulation of speech cooperative articulation by muscle linkages. Biol Cybern 91:275–282

    Article  PubMed  Google Scholar 

  • Ivry RB, Fiez JA (2000) Cerebellar contributions to cognition and imagery. In: Gazzaniga MS (ed) The new cognitive neurosciences, 2nd edn. MIT Press, Cambridge, MA, pp 999–1011

    Google Scholar 

  • Ivry RB, Robertson LC (1998) The two sides of perception. MIT Press, Cambridge, MA

    Google Scholar 

  • Jeffries KJ, Fritz JB, Braun AR (2003) Words in melody: an H(2)15O PET study of brain activation during singing and speaking. Neuroreport 14(5):749–754

    Article  CAS  PubMed  Google Scholar 

  • Justus T (2004) The cerebellum and English grammatical morphology: evidence from production, comprehension, and grammaticality judgments. J Cogn Neurosci 16(7):1115–1130

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  CAS  PubMed  Google Scholar 

  • Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neuronal network model for control and learning of voluntary movement. Biol Cybern 57:169–185

    Article  CAS  PubMed  Google Scholar 

  • Keele S, Ivry R (1990) Does the cerebellum provide a common computation for diverse tasks? In: Dimond A (ed) The development and neural bases of higher cortical function, vol 608. Annals of the New York Academy of Sciences. New York Academy of Sciences, New York, pp 179–211

    Google Scholar 

  • Kent R, Kent J, Weismer G, Duffy J (2000) What dysarthrias can tell us about the neural control of speech. J Phon 28:273–302

    Article  Google Scholar 

  • Kingma A, Mooij JJ, Metzemaekers JD, Leeuw JA (1994) Transient mutism and speech disorders after posterior fossa surgery in children with brain tumours. Acta Neurochir 131(1–2):74–79

    Article  CAS  PubMed  Google Scholar 

  • Kleber B, Veit R, Birbaumer N, Gruzelier J, Lotze M (2010) The brain of opera singers: experience dependent changes in functional activation. Cereb Cortex 20:1144–1152

    Article  CAS  PubMed  Google Scholar 

  • Kotz SA, Schwartze M (2010) Cortical speech processing unplugged: a timely subcortico-cortical framework. Trends Cogn Sci 14(9):392–399

    Article  PubMed  Google Scholar 

  • Kusano Y, Tanaka Y, Takasuna H, Wada N, Tada T, Kakizawa Y, Hongo K (2006) Transient cerebellar mutism caused by bilateral damage to the dentate nuclei after the second posterior fossa surgery. Case report. J Neurosurg 104(2):329–331

    Article  PubMed  Google Scholar 

  • Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M (2011) The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex 47(1):137–144

    Article  PubMed  Google Scholar 

  • Leiner HC (2010) Solving the mystery of the human cerebellum. Neuropsychol Rev 20:229–235

    Article  PubMed  Google Scholar 

  • Leiner HC, Leiner AL, Dow RS (1995) The underestimated cerebellum. Hum Brain Mapp 2:244–254

    Article  Google Scholar 

  • Manto M (2008) The cerebellum, cerebellar disorders, and cerebellar research – two centuries of discoveries. Cerebellum 7:505–516

    Article  PubMed  Google Scholar 

  • Mariën P, Manto M (2016) The linguistic cerebellum. Academic, London

    Google Scholar 

  • Mariën P, Saerens J, Nanhoe R, Moens E, Nagels G, Pickut BA, Dierckx RA, De Deyn PP (1996) Cerebellar induced aphasia: case report of cerebellar induced prefrontal aphasic language phenomena supported by SPECT findings. J Neurol Sci 144(1–2):34–43

    Article  PubMed  Google Scholar 

  • Mariën P, Engelborghs S, Pickut B, De Deyn PP (2000) Aphasia following cerebellar damage: fact or fallacy? J Neurolinguistics 13:145–171

    Article  Google Scholar 

  • Marvel CL, Desmond JE (2016) In: Mariën P, Manto M (eds) The linguistic cerebellum. Academic, London, pp 51–62

    Chapter  Google Scholar 

  • Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:458–461

    Article  CAS  PubMed  Google Scholar 

  • Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 31:236–250

    Article  CAS  PubMed  Google Scholar 

  • Molinari M, Leggio M (2016) Cerebellum and verbal fluency (phonological and semantic). In: Mariën P, Manto M (eds) The linguistic cerebellum. Academic, London, pp 63–80

    Chapter  Google Scholar 

  • Muller AM, Meyer M (2014) Language in the brain at rest: new insights from resting state data and graph theoretical analysis. Front Hum Neurosci 8:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Parsons L (2003) Exploring the functional neuroanatomy of music performance, perception and comprehension. In: Peretz I, Zatorre R (eds) The cognitive neuroscience of music. Oxford University Press, Oxford, pp 247–268

    Chapter  Google Scholar 

  • Parsons L, Petacchi A, Schmahmann J, Bower J (2009) Pitch discrimination in cerebellar patients: evidence for a sensory deficit. Brain Res 1303:84–96

    Article  CAS  PubMed  Google Scholar 

  • Perry DW, Zatorre RJ, Petrides M, Alivisatos B, Meyer E, Evans AC (1999) Localization of cerebral activity during simple singing. Neuroreport 10(18):3979–3984

    Article  CAS  PubMed  Google Scholar 

  • Petacchi A, Laird A, Fox P, Bower J (2005) Cerebellum and auditory function: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp 25:118–128

    Article  PubMed  PubMed Central  Google Scholar 

  • Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331(6157):585–589

    Article  CAS  PubMed  Google Scholar 

  • Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA (2006) Cerebellar damage produces selective deficits in verbal working memory. Brain 129(Pt 2):306–320, Epub 2005 Nov 29

    Article  PubMed  Google Scholar 

  • Riecker A, Ackermann H, Wildgruber D, Meyer J, Dogil G, Haider H, Grodd W (2000) Articulatory/phonetic sequencing at the level of the anterior perisylvian cortex: a functional magnetic resonance imaging (fMRI) study. Brain Lang 75(2):259–276

    Article  CAS  PubMed  Google Scholar 

  • Riecker A, Kassubek J, Groschel K, Grodd W, Ackermann H (2006) The cerebral control of speech tempo: opposite relationship between speaking rate and BOLD signal changes at striatal and cerebellar structures. NeuroImage 29:46–53

    Article  PubMed  Google Scholar 

  • Riva D, Giorgi C (2000) The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain 123:1051–1061

    Article  PubMed  Google Scholar 

  • Schlösser R, Hutchinson M, Joseffer S, Rusinek H, Saarimaki A, Stevenson J, Dewey SL, Brodie JD (1998) Functional magnetic resonance imaging of human brain activity in a verbal fluency task. J Neurol Neurosurg Psychiatry 64(4):492–498

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmahmann J, Pandya D (1997) Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci 17(1):438–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579

    Article  PubMed  Google Scholar 

  • Schoch B, Dimitrova A, Gizewski ER, Timmann D (2006) Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. NeuroImage 30(1):36–51

    Article  CAS  PubMed  Google Scholar 

  • Shapiro KA, Moo LR, Caramazza A (2012) Neural specificity for grammatical operations is revealed by content-independent fMR adaptation. Front Psychol 3:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimansky Y, Saling M, Wunderlich D, Bracha V, Stelmach G, Bloedel J (1997) Impaired capacity of cerebellar patients to perceive and learn two-dimensional shape based on kinesthetic cues. Learn Mem 4:36–48

    Article  CAS  PubMed  Google Scholar 

  • Silveri MC, Leggio MG, Molinari M (1994) The cerebellum contributes to linguistic production: a case of agrammatic speech following a right cerebellar lesion. Neurology 44(11):2047–2050

    Article  CAS  PubMed  Google Scholar 

  • Skipper J, Nusbaum H, Small S (2005) Lending a helping hand to hearing: another motor theory of speech perception. In: Arbib M (ed) Action to language via the mirror neuron system. Cambridge University Press, Cambridge, MA

    Google Scholar 

  • Stevens KN, Halle M (1967) Remarks on analysis by synthesis and distinctive features. In: Walthen-Dunn W (ed) Models for the perception of speech and visual form. MIT Press, Cambridge, MA

    Google Scholar 

  • Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage 44(2):489–501

    Article  PubMed  Google Scholar 

  • Stoodley CJ, Schmahmann JD (2016) Functional linguistic topography of the cerebellum. In: Mariën P, Manto M (eds) The linguistic cerebellum. Academic, London, pp 315–335

    Chapter  Google Scholar 

  • Strick P, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Ann Rev Neurosci 32:413–434

    Article  CAS  PubMed  Google Scholar 

  • Timmann D, Daum I (2007) Cerebellar contributions to cognitive functions: a progress report after two decades of research. Cerebellum 6(3):159–162

    Article  PubMed  Google Scholar 

  • Turkstra LS, Bayles KA (1992) Acquired mutism: physiopathy and assessment. Arch Phys Med Rehabil 73(2):138–144

    CAS  PubMed  Google Scholar 

  • Urban PP, Gawehn J, Massinger C (2003) Cerebellar speech representation: lesion topography in dysarthria as derived from cerebellar ischemia and functional magnetic resonance imaging. Arch Neurol 60:965–972

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Callan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Callan, D.E., Manto, M.U. (2019). Cerebellar Control of Speech and Song. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_51-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_51-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics