Skip to main content

Delineation of Cerebrocerebellar Networks with MRI Measures of Functional and Structural Connectivity

  • Living reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

In humans, resting-state functional connectivity MRI (fcMRI) allows precise in vivo delineation of the neocerebellum’s participation in well-segregated, nonmotor intrinsic connectivity networks (ICNs). These data reveal that the neocerebellum participates in several ICNs, including the default mode network (lobule IX), the salience network (lobule VI), and the right and left executive networks (crus I and II). Additionally, fcMRI permits an anatomical parcellation of the neocerebellum based on its specific functional links with the associative cortex. Lobules V, VII, IX, and especially crus I and II constitute a supramodal cognitive zone specifically interconnected with prefrontal, parietal, and cingulate neocortices. Structural connectivity using DTI-based tractography complements fcMRI data and confirms anatomical connections between the dentate nucleus, thalamus, and associative cortices. Taken together, these results support the theory that specific neocerebellar subregions are key nodes in parallel, multisynaptic, closed-loop circuits involved in executive, mnemonic, and affective functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akkal D, Dum RP, Strick PL (2007) Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci 27:10659–10673

    Article  CAS  Google Scholar 

  • Allen G, McColl R, Holly B, Ringe WK, Fleckenstein J, Cullum CM (2005) Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. Neuroimage 28:39–48

    Article  Google Scholar 

  • Arrigo A, Mormina E, Anastasi GP, Calamuneri A, Quartarone A, De Salvo S, Bruschetta D, Rizzo G, Trimarchi F, Milardi D (2014) Constrained spherical deconvolution analysis of the limbic network in human, with emphasis on a direct cerebello-limbic pathway. Front Hum Neurosci 8:987. https://doi.org/10.3389/fnhum.2014.00987. ECollection 2014

  • Beckmann CF, Smith SM (2004) Tensorial extension of independent component analysis for multi-subject FMRI analysis. IEEE Trans Med Imaging 23:137–152

    Article  Google Scholar 

  • Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond Ser B Biol Sci 360:1001–1013

    Article  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  CAS  Google Scholar 

  • Bostan AC, Dum RP, Strick PL (2010) The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A 107:8452–8456

    Article  CAS  Google Scholar 

  • Brissenden JA, Levin EJ, Osher DE, Halko MA, Somers DC (2016) Functional evidence for a cerebellar node of the dorsal attention network. J Neurosci 36(22):6083–6093

    Article  CAS  Google Scholar 

  • Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT (2011) The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165

    Article  Google Scholar 

  • Coffman KA, Dum RP, Strick PL (2011) Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proc Natl Acad Sci U S A 108(38):16068–16073

    Article  CAS  Google Scholar 

  • Dell’Acqua F, Bodi I, Slater D, Catani M, Modo M (2013) MR diffusion histology and micro-tractography reveal mesoscale features of the human cerebellum. Cerbellum 12(6): 923–931

    Article  Google Scholar 

  • Diedrischsen J, Balsters JH, Flavell J, Cussans E, Rammani N (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46:39–46

    Article  Google Scholar 

  • Doron KW, Funk CM, Glickstein M (2010) Fronto-cerebellar circuits and eye movement control: a diffusion imaging tractography study of human cortico-pontine projections. Brain Res 1307:63–71

    Article  CAS  Google Scholar 

  • Dum RP, Strick PL (2003) An unfolded map of the cerebellar dentate nucleus and its projection to the cerebral cortex. J Neurophysiol 89:634–639

    Article  Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    Article  CAS  Google Scholar 

  • Granziera C, Schmahmann JD, Hadjikhani N, Meyer H, Meuli R, Wedeen V, Krueger G (2009) Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum system in vivo. PLoS One 4:1–6

    Article  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100:253–258

    Article  CAS  Google Scholar 

  • Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 101:4637–4642

    Article  CAS  Google Scholar 

  • Greicius MD, Supekar K, Menon V, Dougherty RF (2008) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19(1):72–78. Epub 2008 Apr 9

    Article  Google Scholar 

  • Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19:72–78

    Article  Google Scholar 

  • Haarmeier T, Thier P (2007) The attentive cerebellum – myth or reality? Cerebellum 6:177–183

    Article  Google Scholar 

  • Habas C, Cabanis EA (2007) Cortical projections to the human red nucleus: complementary results with probabilistic tractography at 3T. Neuroradiology 49:777–784

    Article  Google Scholar 

  • Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD (2009) Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci 29(26):8586–8594

    Article  CAS  Google Scholar 

  • Haines DE, Dietrichs E, Mihailoff GA, McDonald EF (1997) Cerebellar-hypothalamic axis: basis circuits and clinical observations. Int Rev Neurobiol 41:84–107

    Google Scholar 

  • Hasson U, Nusbaum HC, Small SL (2009) Task-dependent organization of brain regions active during rest. Proc Natl Acad Sci U S A 106(26):10841–10846

    Article  CAS  Google Scholar 

  • He Y, Zang Y, Jiang T, Liang M, Gong G (2004) Detecting functional connectivity of the cerebellum using low frequency fluctuations (LFFs). LNCS 3217:907–915

    Google Scholar 

  • Helmuth LL, Ivry RB, Shimizu N (1997) Preserved performance by cerebellar patients on tests of word generation, discrimination learning and attention. Learn Mem 3:456–474

    Article  CAS  Google Scholar 

  • Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A 106:2035–2040

    Article  CAS  Google Scholar 

  • Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8:1491–1493

    Article  CAS  Google Scholar 

  • Hyam JA, Owen SLF, Kringelbach ML, Jenkinson H, Stein JF, Green AL, Aziz TZ (2012) Contrasting connectivity of the ventralis intermedius and ventralis oralis posterior nuclei of the motor thalamus demonstrated by probabilistic tractography. Neurosurgery 70(1):162–169

    Article  Google Scholar 

  • Jissendi P, Baudry S, Balériaux D (2008) Diffusion tensor imaging (DTI) and tractography of the cerebellar projections to prefrontal and posterior parietal cortices: a study at 3T. J Neuroradiol 35:42–50

    Article  CAS  Google Scholar 

  • Kamali A, Kramer LA, Frye RE, Butler IJ, Hasan KM (2010) Diffusion tensor tractography of the human brain cortico-ponto-cerebellar pathways: a quantitative preliminary study. J Magn Reson Imaging 32(4):809–817

    Article  Google Scholar 

  • Krienen FM, Buckner RL (2009) Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex 19:2485–2497

    Article  Google Scholar 

  • Levisohn L, Cronin-Golomb A, Schmahmann JD (2000) Neuropsychological consequences of cerebellar tumour resection in children. Cerebellar cognitive affective syndrome in paediatric population. Brain 123:1041–1050

    Article  Google Scholar 

  • MacLeod CE, Zilles K, Schleicher A, Rilling JK, Gibson KR (2003) Expansion of the neocerebellum in Hominoidea. J Hum Evol 44:401–429

    Article  Google Scholar 

  • Middleton FA, Strick PL (1997) Dentate output channels: motor and cognitive components. Prog Brain Res 114:555–568

    Google Scholar 

  • Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 15:700–712

    Article  Google Scholar 

  • Milardi D, Arrigo A, Anastasi G, Cacciola A, Marino S, Mormina E, Calamuneri A, Bruschetta D, Cutroneo G, Trimarchi F, Quartarone A (2016) Extensive direct subcortical cerebellum-basal ganglia connections in human brain as revealed by constrained spherical deconvolution tractography. Front Neurosci 10:29

    Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (2007) The human central nervous system: a synopsis and atlas, 4th edn. Springer, New York

    Google Scholar 

  • Nioche C, Cabanis EA, Habas C (2009) Functional connectivity of the human red nucleus in the brain resting state at 3T. Am J Neuroradiol 30:396–403

    Article  CAS  Google Scholar 

  • O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H (2009) Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 20:953–965

    Article  Google Scholar 

  • Pelzer EA, Hintzen A, Goldau M, von Cramon DY, Timmermann L, Tittgemeyer M (2013) Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci 38:3106–3114

    Article  Google Scholar 

  • Pelzer EA, Melzer C, Timmermann L, von Cramon DY, Tittgemeyer M (2017) Basal ganglia and cerebellar interconnectivity within the thalamus. Brain Struct Funct 22(1): 381–392

    Article  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682

    Article  CAS  Google Scholar 

  • Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7:511–522

    Article  CAS  Google Scholar 

  • Ramnani N, Behrens TEJ, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JLR, Rudebeck P, Ciccarelli O et al (2005) The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb Cortex 16:811–818

    Article  Google Scholar 

  • Sang L, Qin W, Liu Y, Han W, Zhang Y, Jiang Y, Yu C (2012) Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. NeuroImage 61(4):1213–1225

    Article  Google Scholar 

  • Schmahmann JD (1991) An emerging concept: the cerebellar contribution to higher function. Arch Neurol 48:1178–1187

    Article  CAS  Google Scholar 

  • Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatr Clin Neurosci 16:367–378

    Article  Google Scholar 

  • Schmahmann JD, Pandya DN (1997) The cerebrocerebellar system. Int Rev Neurobiol 41:31–60

    Article  CAS  Google Scholar 

  • Schmahmann JD, Shermann JC (1998) The cerebellar cognitive and affective syndrome. Brain 121:561–579

    Article  Google Scholar 

  • Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356

    Article  CAS  Google Scholar 

  • Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD (2011) Decoding subject-driven cognitive states with whole-brain functional connectivity patterns. Cereb Cortex 22:158–165

    Article  Google Scholar 

  • Skudlarski P, Jagannathan K, Calhoun VD, Hampson M, Skudlarska BA, Pearlson G (2008) Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage 43:554–561

    Article  Google Scholar 

  • Sokolov AA, Erb M, Grodd W, Pavlova MA (2014) Structural loop between the cerebellum and the superior temporal sulcus: evidence from diffusion tensor imaging. Cereb Cortex 24:626–632

    Article  Google Scholar 

  • Stoodley CJ, Schmahmann JD (2008) Functional topography in the human cerebellum: a metaanalysis of neuroimaging studies. Neuroimage 44:489–501

    Article  Google Scholar 

  • Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434

    Article  CAS  Google Scholar 

  • Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG (2011) The cerebellar cognitive profile. Brain 134:3669–3683

    Article  Google Scholar 

  • Thier P, Haarmeier T, Treue S, Barash S (1999) Absence of a common functional denominator of visual disturbances in cerebellar disease. Brain 122(Pt 11):2133–2146

    Article  Google Scholar 

  • Timmann D, Daum I (2010) How consistent are cognitive impairments in patients with cerebellar disorders. Behav Neurol 21:1–21

    Google Scholar 

  • van den Heuvel MP, Mandl RCW, Kahn RS, Pol HEH (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30:3127–3141

    Article  Google Scholar 

  • van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL (2010) Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 103:297–321

    Article  Google Scholar 

  • Vincent JL, Pratel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Voogt J (2003) The human cerebellum. J Chem Neuroanat 26:243–252

    Article  Google Scholar 

  • Whiting BA, Barton RA (2003) The evolution of the cortico-cerebellar complex in primates anatomical connections predict patterns of correlated evolution. J Hum Evol 44:3–10

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Habas .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Habas, C., Shirer, W.R., Greicius, M.D. (2019). Delineation of Cerebrocerebellar Networks with MRI Measures of Functional and Structural Connectivity. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_26-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_26-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics