Skip to main content

Classical Hamiltonian Chaos

  • Chapter
  • First Online:
Quantum Signatures of Chaos

Part of the book series: Springer Series in Synergetics ((SSSYN))

  • 1179 Accesses

Abstract

This chapter will present classical Hamiltonian mechanics to the extent needed for the semiclassical endeavors to follow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here and below, it is best to read \(X={q\choose p},\,\partial _X={\partial _q\choose \partial _p}\), and \(\widetilde {\partial _X}=(\partial _q,\partial _p)\).

  2. 2.

    The time dependent Hamiltonian for the linearized flow is obtained from the original H by expanding around the chosen trajectory and dropping terms of higher than second order in ΔX.

  3. 3.

    The notion of ensembles is of particular importance for the statistical treatment of many-particle systems.

  4. 4.

    The symplectic area element can also be written as the antisymmetric wedge product δX ∧ δX′ .

  5. 5.

    For the Hamiltonian dynamics under exclusive consideration here, no trajectory can end in, start out from, or pass through a stationary point such that neither F(X 0) = 0 nor F(X t) = 0 make for worry; isolated moments of time with F(X t) =  arise for elastic collisions of the hard-wall type but do not invalidate the conclusion.

  6. 6.

    Quantum mechanics of course does not allow for classical nonsense like infinitely fine phase-space structures. Quantum effects smoothen out the classical infinitely fissured landscape just mentioned [7]. In other words, “quantum diffusion” reinforces “Hamiltonian equilibration”.

  7. 7.

    Imagine phase space parametrized by a canonical pair p , q for momentum and coordinate along the flow, together with f − 1 further pairs making up x ; then replace p by E and realize \(\frac {\partial E}{\partial p_\|}=\dot {q}_\|\) to conclude dp dq  = dEdt ; here dt equals the time differential dt, but it is well to distinguish the phase-space coordinate confined as 0 ≤ t  < T p from the time t which never ends.

  8. 8.

    There is no contradiction between the propagator being a Dirac delta at all times and equilibration for t →; note that the definition of Dirac deltas requires protection by integrals against smooth phase-space densities. See also the reasoning in Sect. 9.11.

  9. 9.

    A focal or conjugate point in configuration space allows for a family of trajectories to fan out, each with a different momentum, which all reunite in another such point; we shall have to deal with conjugate points in the next chapter, see Sect. 10.2.2.

  10. 10.

    To check normalization to unity by integrating over the energy shell would require an extension of the coordinates u, s beyond \({\mathcal {P}}\).

  11. 11.

    In permutation-theory parlance, condition (ii) distinguishes l-encounters for which the permutation 1, 2…, l → i 1, i 2, …, i l of left-port labels to right-port labels is a single cycle, rather than a collection of separate cycles; the cycle structure of permutations will become an issue presently; see Fig. 9.10.

References

  1. A.J. Lichtenberg, M.A. Liebermann, Regular and Chaotic Dynamics, Applied Mathematical Sciences, vol. 38, 2nd edn. (Springer, New York, 1992)

    Google Scholar 

  2. P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  3. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993)

    MATH  Google Scholar 

  4. H.G. Schuster, W. Just, Deterministic Chaos: An Introduction, 4th edn. (Wiley, Weinheim, 2005)

    Book  Google Scholar 

  5. P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, G. Vattay, Chaos: Classical and Quantum (Niels Bohr Institute, Copenhagen 2005). www.ChaosBook.org

  6. V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1980)

    Google Scholar 

  7. A. Altland, F. Haake, New J. Phys. 14 073011 (2012)

    Article  ADS  Google Scholar 

  8. J.H. Hannay, A.M. Ozorio de Almeida, J. Phys. A17, 3429 (1984)

    ADS  Google Scholar 

  9. A.M. Ozorio de Almeida, Hamiltoniam Systems: Chaos and Quantization (Cambridge University Press, Cambridge, 1988)

    MATH  Google Scholar 

  10. R. Bowen, Am. J. Math. 94, 1 (1972)

    Article  Google Scholar 

  11. W. Parry, M. Pollicott, Astérisque 187, 1 (1990)

    Google Scholar 

  12. M. Dörfle, J. Stat. Phys. 40, 93 (1985)

    Article  ADS  Google Scholar 

  13. P. Cvitanović, B. Eckhardt, J. Phys. A24, L237 (1991); Phys. Rev. Lett. 63, 823 (1989); Nonlinearity 6, 277 (1993)

    Google Scholar 

  14. R. Artuso, E. Aurell, P. Cvitanović, Nonlinearity 3, 325;361 (1990)

    Google Scholar 

  15. A. Selberg, J. Ind. Math. Soc. 20, 47 (1956)

    Google Scholar 

  16. J.H. Poincaré, Les Méthodes nouvelles de la 22221q‘ mécanique céleste (Gauthier-Villard, Paris, 1899; reed. A. Blanchard, Paris, 1987)

    Google Scholar 

  17. I.L. Aleiner, A.I. Larkin, Phys. Rev. B54, 14423 (1996)

    Article  ADS  Google Scholar 

  18. M. Sieber, K. Richter, Phys. Scr. T90, 128 (2001); M. Sieber: J. Phys. A35, L613 (2002)

    Google Scholar 

  19. A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  20. M.V. Berry, Proc. R. Soc. Lond. Ser. A 400, 229 (1985)

    Google Scholar 

  21. N. Argaman, F.-M. Dittes, E. Doron, J.P. Keating, A.Yu. Kitaev, M. Sieber, U. Smilansky, Phys. Rev. Lett. 71, 4326 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Müller, Eur. Phys. J. B 34, 305 (2003); Diplomarbeit, Universität Essen (2001)

    Article  ADS  Google Scholar 

  23. M. Turek, D. Spehner, S. Müller, K. Richter, Phys. Rev. E 71, 016210 (2005)

    Google Scholar 

  24. S. Müller, S. Heusler, P. Braun, F. Haake, A. Altland, Phys. Rev. E 72, 046207 (2005)

    Google Scholar 

  25. S. Heusler, S. Müller, P. Braun, F. Haake, J. Phys. A 37, L31 (2004)

    Google Scholar 

  26. S. Heusler, Ph.D. thesis, Universität Duisburg-Essen (2004)

    Google Scholar 

  27. S. Müller, S. Heusler, P. Braun, F. Haake, A. Altland, Phys. Rev. Lett. 93, 014103 (2004)

    Article  ADS  Google Scholar 

  28. S. Müller, Ph.D. thesis, Universität Duisburg-Essen (2005)

    Google Scholar 

  29. S. Heusler, S. Müller, A. Altland, P. Braun, F. Haake, Phys. Rev. Lett. 98, 044103 (2007)

    Article  ADS  Google Scholar 

  30. K. Richter, M. Sieber, Phys. Rev. Lett. 89, 206801 (2002)

    Article  ADS  Google Scholar 

  31. H. Schanz, M. Puhlmann, T. Geisel, Phys. Rev. Lett. 91, 134101 (2003)

    Article  ADS  Google Scholar 

  32. O. Zaitsev, D. Frustaglia, K. Richter, Phys. Rev. Lett. 94, 026809 (2005)

    Article  ADS  Google Scholar 

  33. R.S. Whitney, P. Jacquod, Phys. Rev. Lett. 94, 116801 (2005); ibid. 96, 206804 (2006)

    Google Scholar 

  34. S. Heusler, S. Müller, P. Braun, F. Haake, Phys. Rev. Lett. 96, 066804 (2006)

    Article  ADS  Google Scholar 

  35. P. Braun, S. Heusler, S. Müller, F. Haake, J. Phys. A 39, L159 (2006)

    Google Scholar 

  36. S. Müller, S. Heusler, P. Braun, F. Haake, New J. Phys. 9, 12 (2007)

    Article  ADS  Google Scholar 

  37. A. Altland, P. Braun, F. Haake, S. Heusler, G. Knieper, S. Müller, arXiv:0906.4930v1[linCD](26 Jun 2009); Near action-degenerate periodic orbit bunches: a skeleton of chaos, in Proceedings of the 9th International Conference Path Integrals – New Trends and Perspectives; Max-Planck Institute for the Physics of Complex Systems, Dresden, Germany, Sept 23–28, 2007, ed. by W. Janke, A. Pelster (World Scientific, 2008), pp. 40–47

    Google Scholar 

  38. D. Spehner, J. Phys. A 36, 7269 (2003)

    Google Scholar 

  39. M. Turek, K. Richter, J. Phys. A 36, L455 (2003)

    Google Scholar 

  40. P. Braun, F. Haake, S. Heusler, J. Phys. A 35, 1381 (2002)

    Google Scholar 

  41. H.M. Huynh, M. Kunze: Nonlinearity 28, 593 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  42. H.M. Huynh, Phys. D D314, 35 (2016)

    Article  ADS  Google Scholar 

  43. K. Bieder, http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/BiederKamil/diss.pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haake, F., Gnutzmann, S., Kuś, M. (2018). Classical Hamiltonian Chaos. In: Quantum Signatures of Chaos. Springer Series in Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-97580-1_9

Download citation

Publish with us

Policies and ethics