Skip to main content

Modeling and Simulation of Microalgae Growth in a Couette-Taylor Bioreactor

  • Conference paper
  • First Online:
Book cover High Performance Computing in Science and Engineering (HPCSE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11087))

  • 557 Accesses

Abstract

Despite the fact that biotechnology with microalgae is attracting a lot of research interest since 1950s, a reliable computational tool for simulation of microalgal bioreactors is still lacking. In this work, a unified multidisciplinary modeling framework for microalgae culture systems is presented. Our framework consists of the model of microalgae growth in form of advection-diffusion-reaction system within a phenomenological model of photosynthesis and photoinhibition. The fluid dynamics is described by the Navier-Stokes equations and the irradiance field inside a reactor closes the equation system. The main achievement resides in successful integration of computational fluid dynamics code ANSYS Fluent and reaction kinetics, which makes our approach reliable and simple to implement. As a case study, the simulation of microalgae growth in a Couette-Taylor bioreactor is presented. The bioreactor operation leads to hydrodynamically induced fluctuating light conditions and the flashing light enhancement phenomenon, known from experiments. The presented model thus exhibits features of a real system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez-Vázquez, L., Fernández, F.: Optimal control of bioreactor. Appl. Math. Comput. 216, 2559–2575 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Beek, W.J., Muttzall, K.M.K., van Heuven, J.W.: Transport Phenomena. Wiley, Hoboken (2000)

    Google Scholar 

  3. Bernard, O., Mairet, F., Chachuat, B.: Modelling of microalgae culture systems with applications to control and optimization. Adv. Biochem. Eng. Biotechnol. 153, 59–87 (2016)

    Google Scholar 

  4. Bernardi, A., Perin, G., Sforza, E., Galvanin, F., Morosinotto, T., Bezzo, F.: An identifiable state model to describe light intensity influence on microalgae growth. Ind. Eng. Chem. Res. 53, 6738–6749 (2014)

    Article  Google Scholar 

  5. Cornet, J.-F., Dussap, C.G., Gros, J.-B., Binois, C., Lasseur, C.: A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photobioreactors. Chem. Eng. Sci. 50, 1489–1500 (1995)

    Article  Google Scholar 

  6. Čelikovský, S., Papáček, Š., Cervantes-Herrera, A., Ruiz-León, J.: Singular perturbation based solution to optimal microalgal growth problem and its infinite time horizon analysis. IEEE Trans. Autom. Control 55, 767–772 (2010)

    Article  MathSciNet  Google Scholar 

  7. Chisti, Y.: Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007)

    Article  Google Scholar 

  8. Davis, E.A.: Turbulence. In: Burlew, J.S. (ed.) Algal Culture from Laboratory to Pilot Plant, vol. 600, pp. 135–138. Carnegie Institute, Washington, D.C. (1953)

    Google Scholar 

  9. Eilers, P.H.C., Peeters, J.C.H.: A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Model. 42, 199–215 (1988)

    Article  Google Scholar 

  10. ANSYS Fluent product documentation. http://www.ansys.com/

  11. Kok, B.: Experiments on photosynthesis by Chlorella in flashing light. In: Burlew, J.S. (ed.) Algal Culture From Laboratory to Pilot Plant. Publ. no. 600, pp. 63–75. The Carnegie Institute, Washington, D.C. (1953)

    Google Scholar 

  12. Nedbal, L., Tichý, V., Xiong, F., Grobbelaar, J.U.: Microscopic green algae and cyanobacteria in high-frequency intermittent light. J. Appl. Phycol. 8, 325–333 (1996)

    Article  Google Scholar 

  13. Ooms, M.D., Dinh, C.T., Sargent, E.H., Sinton, D.: Photon management for augmented photosynthesis. Nat. Commun. 7, 12699 (2016). https://doi.org/10.1038/ncomms12699

    Article  Google Scholar 

  14. Papáček, Š., Čelikovský, S., Štys, D., Ruiz-León, J.: Bilinear system as modelling framework for analysis of microalgal growth. Kybernetika 43, 1–20 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Papáček, Š., Stumbauer, V., Štys, D., Petera, K., Matonoha, C.: Growth impact of hydrodynamic dispersion in a Couette-Taylor bioreactor. Math. Comput. Model. 54(7–8), 1791–1795 (2011)

    Article  Google Scholar 

  16. Papáček, Š., Matonoha, C., Štumbauer, V., Štys, D.: Modelling and simulation of photosynthetic microorganism growth: random walk vs. finite difference method. Math. Comput. Simul. 82(10), 2022–2032 (2012)

    Article  MathSciNet  Google Scholar 

  17. Papacek, S., Jablonsky, J., Petera, K.: Advanced integration of fluid dynamics and photosynthetic reaction kinetics for microalgae culture systems (2017, submitted)

    Google Scholar 

  18. Rehák, B., Čelikovský, S., Papáček, Š.: Model for photosynthesis and photoinhibition: parameter identification based on the harmonic irradiation \(O_2\) response measurement. In: Joint Special Issue of TAC IEEE and TCAS, 101–108. IEEE (2008)

    Article  Google Scholar 

  19. Richmond, A.: Biological principles of mass cultivation. In: Richmond, A. (ed.) Handbook of Microalgal Culture: Biotechnology and Applied Phycology, pp. 125–177. Blackwell Publishing, Hoboken (2004)

    Google Scholar 

  20. Taylor, G.I.: Stability of a viscous liquid containing between two rotating cylinders. Phil. Trans. R. Soc. A223, 289–343 (1923)

    Article  Google Scholar 

  21. Terry, K.L.: Photosynthesis in modulated light: quantitative dependence of photosynthetic enhancement on flashing rate. Biotechnol. Bioeng. 28, 988–995 (1986)

    Article  Google Scholar 

  22. Wu, X., Merchuk, J.C.: A model integrating fluid dynamics in photosynthesis and photoinhibition processes. Chem. Eng. Sci. 56(11), 3527–3538 (2001)

    Article  Google Scholar 

  23. Wu, X., Merchuk, J.C.: Simulation of algae growth in a bench-scale bubble column reactor. Biotechnol. Bioeng. 80, 156–168 (2002)

    Article  Google Scholar 

  24. Celik, I., Ghia, U., Roache, P., Freitas, C., Coleman, H., Raad, P.: J. Fluids Eng. 130 (2008)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic - projects “CENAKVA” (No. CZ.1.05/2.1.00/01.0024), “CENAKVA II” (No. LO1205 under the NPU I program) and The CENAKVA Centre Development (No. CZ.1.05/2.1.00/19.0380) and by the long-term strategic development financing of the Institute of Computer Science (RVO: 67985807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ctirad Matonoha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Papáček, Š., Matonoha, C., Petera, K. (2018). Modeling and Simulation of Microalgae Growth in a Couette-Taylor Bioreactor. In: Kozubek, T., et al. High Performance Computing in Science and Engineering. HPCSE 2017. Lecture Notes in Computer Science(), vol 11087. Springer, Cham. https://doi.org/10.1007/978-3-319-97136-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97136-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97135-3

  • Online ISBN: 978-3-319-97136-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics