Skip to main content

Recognizing Motor Imagery Tasks Using Deep Multi-Layer Perceptrons

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10935))

Abstract

A brain-computer interface provides individuals with a way to control a computer. However, most of these interfaces remain mostly utilized in research laboratories due to the absence of certainty and accuracy in the proposed systems. In this work, we acquired our own dataset from seven able-bodied subjects and used Deep Multi-Layer Perceptrons to classify motor imagery encephalography signals into binary (Rest vs Imagined and Left vs Right) and ternary classes (Rest vs Left vs Right). These Deep Multi-Layer Perceptrons were fed with power spectral features computed with the Welch’s averaged modified periodogram method. The proposed architectures outperformed the accuracy achieved by the state-of-the-art for classifying motor imagery bioelectrical brain signals obtaining 88.03%, 85.92% and 79.82%, respectively, and an enhancement of 11.68% on average over the commonly used Support Vector Machines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Birbaumer, N.: Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology 43(6), 517–532 (2006)

    Article  Google Scholar 

  2. Shih, J.J., Krusienski, D.J., Wolpaw, J.R.: Brain-computer interfaces in medicine. Mayo Clin. Proc. 87(3), 268–279 (2012)

    Article  Google Scholar 

  3. Lebedev, M.A., Nicolelis, M.A.: Brain-machine interfaces: past, present and future. Trends Neurosci. 29(9), 536–546 (2006)

    Article  Google Scholar 

  4. Becedas, J.: Brain-machine interfaces: basis and advances. IEEE Trans. Syst., Man, Cybern. Part C (Appl. Rev.) 42(6), 825–836 (2012)

    Article  Google Scholar 

  5. Vega, R., Sajed, T., Mathewson, K.W., Khare, K., Pilarski, P., Greiner, R., Sanchez-Ante, G., Antelis, J.M.: Assessment of feature selection and classification methods for recognizing motor imagery tasks from electroencephalographic signals. Artif. Intell. Res. 6(1) (2016)

    Google Scholar 

  6. Middendorf, M., McMillan, G., Calhoun, G., Jones, K.S.: Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans. Rehabil. Eng. 8(2), 211–214 (2000)

    Article  Google Scholar 

  7. Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78(3), 252–259 (1991)

    Article  Google Scholar 

  8. Farwell, L.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988)

    Article  Google Scholar 

  9. Millán, J.R., Rupp, R., Müeller-Putz, G., Murray-Smith, R., Giugliemma, C., Tangermann, M., Vidaurre, C., Cincotti, F., Kübler, A., Leeb, R., Neuper, C., Müeller, K., Mattia, D.: Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Front. Neurosci. 4, 1–61 (2010)

    Google Scholar 

  10. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

  11. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI 2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  12. Allison, B., Dunne, S., Leeb, R., Millan, J.R., Nijholt, A.: Towards Practical Brain-Computer Interfaces: Bridging the Gap from Research to Real-World Applications. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29746-5

    Book  Google Scholar 

  13. Graimann, B., Allison, B.Z., Pfurtscheller, G.: Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02091-9

    Book  Google Scholar 

  14. Wolpaw, J., Wolpaw, E.W. (eds.): Brain-Computer Interfaces: Principles and Practice. Oxford University Press, New York (2012)

    Google Scholar 

  15. van Erp, J., Lotte, F., Tangermann, M.: Brain-computer interfaces: beyond medical applications. Computer 45(4), 26–34 (2012)

    Article  Google Scholar 

  16. World Medical Association: World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310(20), 2191–2194 (2013)

    Google Scholar 

  17. Mellinger, J., Schalk, G.: Number NIPS workshop series. In: BCI2000: A General-Purpose Software Platform for BCI Research. MIT Press (2007)

    Google Scholar 

  18. Lotze, M., Montoya, P., Erb, M., Hülsmann, E., Flor, H., Klose, U., Birbaumer, N., Grodd, W.: Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J. Cogn. Neurosci. 11(5), 491–501 (1999)

    Article  Google Scholar 

  19. Welch, P.D.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70–73 (1967)

    Article  Google Scholar 

  20. Hernández, G., Zamora, E., Sossa, H.: Comparing deep and dendrite neural networks: a case study. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds.) MCPR 2017. LNCS, vol. 10267, pp. 32–41. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59226-8_4

    Chapter  Google Scholar 

  21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc., New York (2012)

    Google Scholar 

  23. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUS). CoRR abs/1511.07289 (2015)

    Google Scholar 

  24. Lotte, F., Congedo, M., Lécuyer, A., Fabrice, L., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces 4 (2007)

    Google Scholar 

  25. Ali, A.B.M.S., Abraham, A.: An empirical comparison of kernel selection for support vector machines. In: Soft computing Systems: Design, Management and Applications, pp. 321–330 (2002)

    Google Scholar 

  26. Blankertz, B., Curio, G., Müller, K.R.: Classifying single trial EEG: towards brain computer interfacing. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 157–164. MIT Press (2002)

    Google Scholar 

  27. Schlögl, A., Lee, F., Bischof, H., Pfurtscheller, G.: Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J. Neural Eng. 2(4), L14 (2005)

    Article  Google Scholar 

  28. Morash, V., Bai, O., Furlani, S., Lin, P., Hallett, M.: Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries. Clin. Neurophysiol. 119(11), 2570–2578 (2008)

    Article  Google Scholar 

  29. Ge, S., Wang, R., Yu, D.: Classification of four-class motor imagery employing single-channel electroencephalography. PLoS ONE 9(6), 1–7 (2014)

    Google Scholar 

  30. Gudiño-Mendoza, B., Sossa, H., Sanchez-Ante, G., Antelis, J.M.: Classification of motor states from brain rhythms using lattice neural networks. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ayala-Ramírez, V., Olvera-López, J.A., Jiang, X. (eds.) MCPR 2016. LNCS, vol. 9703, pp. 303–312. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39393-3_30

    Chapter  Google Scholar 

  31. Antelis, J.M., Gudiño-Mendoza, B., Falcón, L.E., Sanchez-Ante, G., Sossa, H.: Dendrite morphological neural networks for motor task recognition from electroencephalographic signals. Biomed. Signal Process. Control 44, 12–24 (2018)

    Article  Google Scholar 

  32. Ojeda, L., et al.: Classification of hand movements from non-invasive brain signals using lattice neural networks with dendritic processing. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Sossa-Azuela, J.H., Olvera López, J.A., Famili, F. (eds.) MCPR 2015. LNCS, vol. 9116, pp. 23–32. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19264-2_3

    Chapter  Google Scholar 

  33. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., Kingsbury, B.: Deep neural networks for acoustic modeling in speech recognition the shared views of four research groups. IEEE Sig. Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  34. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, Montreal, Quebec, Canada, 8–13 December 2014, pp. 3104–3112 (2014)

    Google Scholar 

  35. Bojarski, M., Testa, D.D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to end learning for self-driving cars. CoRR abs/1604.07316 (2016)

    Google Scholar 

  36. Cecotti, H., Graeser, A.: Convolutional neural network with embedded Fourier transform for EEG classification. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4, December 2008

    Google Scholar 

  37. Cecotti, H., Graser, A.: Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 433–445 (2011)

    Article  Google Scholar 

  38. Jingwei, L., Yin, C., Weidong, Z.: Deep learning EEG response representation for brain computer interface. In: 2015 34th Chinese Control Conference (CCC), pp. 3518–3523, July 2015

    Google Scholar 

  39. Nurse, E., Mashford, B.S., Jimeno-Yepes, A., Kiral-Kornek, I., Harrer, S., Freestone, D.R.: Decoding EEG and LFP signals using deep learning: heading truenorth. In: Conference on Computing Frontiers, pp. 259–266. ACM (2016)

    Google Scholar 

  40. Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. CoRR abs/1511.06448 (2015)

    Google Scholar 

  41. An, X., Kuang, D., Guo, X., Zhao, Y., He, L.: A deep learning method for classification of EEG data based on motor imagery. In: Huang, D.-S., Han, K., Gromiha, M. (eds.) ICIC 2014. LNCS, vol. 8590, pp. 203–210. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09330-7_25

    Chapter  Google Scholar 

  42. Jirayucharoensak, S., Pan-ngum, S., Israsena, P.: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation, 2014, Article ID 627892 (2014)

    Google Scholar 

  43. Zheng, W.L., Zhu, J.Y., Peng, Y., Lu, B.L.: EEG-based emotion classification using deep belief networks. In: 2014 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6, July 2014

    Google Scholar 

  44. Stober, S., Cameron, D.J., Grahn, J.A.: Using convolutional neural networks to recognize rhythm stimuli from electroencephalography recordings. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 1449–1457. Curran Associates, Inc., New York (2014)

    Google Scholar 

  45. Tabar, Y.R., Halici, U.: A novel deep learning approach for classification of eeg motor imagery signals. J. Neural Eng. 14(1), 016003 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

E. Zamora, H. Sossa and M. Antelis would like to acknowledge the support provided by UPIITA-IPN, CIC-IPN and Tecnológico de Monterrey, respectively, in carrying out this research. This work was economically supported by SIP-IPN (grant numbers 20180180 and 20180730), and CONACYT grant numbers 65 (Frontiers of Science), 268958 and PN2015-873. F. Arce and G. Hernández acknowledge CONACYT for the scholarship granted towards pursuing their PhD studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Arce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arce, F., Zamora, E., Hernández, G., Antelis, J.M., Sossa, H. (2018). Recognizing Motor Imagery Tasks Using Deep Multi-Layer Perceptrons. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science(), vol 10935. Springer, Cham. https://doi.org/10.1007/978-3-319-96133-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96133-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96132-3

  • Online ISBN: 978-3-319-96133-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics