Skip to main content

Ergonomic Evaluation of a Prototype Console for Robotic Surgeries via Simulations with Digital Human Manikins

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 822))

Abstract

Work-related musculoskeletal disorders impact surgical performance, which increase risks for patient safety. A new console has been designed to reduce workload for robotic surgery surgeons. Due to high costs and long waiting time of the production process, a pre-production ergonomic evaluation of the new design is preferable. In this paper, we evaluate if the new console at the pre-production stage by using an US checklist, and the Swedish standard for visual display unit work. A 3D model of the new designed console was introduced to the virtual environment of a digital manikin (Intelligently Moving Manikin, IMMA). The work-ranges of the console were calculated. Various individual work distances of 12 manikins (3 men and 3 women per each of the US and the Swedish population) were “measured”. The data were integrated and used as an objective reference to compare with the Swedish standard, and the US checklist. The result shows that the criteria in the Swedish standard and the US checklist are fulfilled, except for those are related to the adjustable range of the screen view height, the height range of the armrest and the adjustable distance of the pedals. The new console fulfills most of the criteria in the checklist and the standard, but there is room for a few improvements. The DHM tool IMMA provides the possibility for a pre-production assessment. However, the limited virtual measurement tools of IMMA restrained the time efficiency of the ergonomic assessment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alleblas CCJ, de Man AM, van den Haak L, Vierhout ME, Jansen FW, Nieboer TE (2017) Prevalence of musculoskeletal disorders among surgeons performing minimally invasive surgery. Ann Surg 266(6):905–920

    Article  Google Scholar 

  2. Huysmans M, Hoozemans M, van der Beek A, de Looze M, van Dieën J (2010) Position sense acuity of the upper extremity and tracking performance in subjects with non-specific neck and upper extremity pain and healthy controls. J Rehabil Med 42(9):876–883

    Google Scholar 

  3. Zihni AM, Ohu I, Cavallo JA, Cho S, Awad MM (2014) Ergonomic analysis of robot-assisted and traditional laparoscopic procedures. Surg Endosc 28(12):3379–3384

    Article  Google Scholar 

  4. Lawson EH, Curet MJ, Sanchez BR, Schuster R, Berguer R (2007) Postural ergonomics during robotic and laparoscopic gastric bypass surgery: a pilot project. J Robot Surg 1(1):61–67

    Article  Google Scholar 

  5. Yu D, Dural C, Morrow MMB, Yang L, Collins JW, Hallbeck S, Kjellman M, Forsman M, Yu D (2016) Intraoperative workload in robotic surgery assessed by wearable motion tracking sensors and questionnaires. Surg Endosc 31(2):1–10

    Google Scholar 

  6. Demirel HO, Duffy VG (2007) Applications of digital human modeling in industry. In: Digital human modeling. Springer, Berlin, Heidelberg, pp 824–832

    Google Scholar 

  7. Hanson L, Högberg D, Carlson JS, Bohlin R, Brolin E, Delfs N, Mårdberg P, Stefan G, Keyvani A, Rhen IM (2014) Imma—intelligently moving manikins in automotive applications

    Google Scholar 

  8. Bohlin R, Delfs N, Hanson L, Högberg D (2012) Automatic creation of virtual manikin motions maximizing comfort in manual assembly processes. In: technologies and systems for assembly quality, productivity and customization: proceedings of the 4th CIRP conference on assembly technologies and systems, pp 209–212

    Google Scholar 

  9. Delfs N, Bohlin R, Hanson L, Högberg D, Carlson J (2013) Introducing stability of forces to the automatic creation of digital human postures. 2nd International Digital Human Model, 2013

    Google Scholar 

  10. Arbetsmiljöverket (1998) Arbete vid bildskärm, AFS 1998:5

    Google Scholar 

  11. Arbetsmiljöverket (2012) Belastningsergonomi, AFS 2012:2

    Google Scholar 

  12. U.S. Department of Labor (2018) “Computer Workstations eTool Checklists Evaluation,” pp 3–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelong Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, X., Rhén, IM., Kjellman, M., Forsman, M. (2019). Ergonomic Evaluation of a Prototype Console for Robotic Surgeries via Simulations with Digital Human Manikins. In: Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y. (eds) Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018). IEA 2018. Advances in Intelligent Systems and Computing, vol 822. Springer, Cham. https://doi.org/10.1007/978-3-319-96077-7_37

Download citation

Publish with us

Policies and ethics