Skip to main content

Self-Healing Polymers: From Biological Systems to Highly Functional Polymers

  • Reference work entry
  • First Online:
Functional Polymers

Abstract

The self-healing phenomenon is well-known from nature. Since the last 15 years, several approaches were developed in order to transfer this behavior into synthetic materials and to enable the preparation of multifunctional polymers. The following chapter summarizes the different polymers and their corresponding healing mechanism and provides an overview of the current state of the art. Additionally, the healing of functions as well as the characterization of the self-healing behavior is provided. Furthermore, a short comparison between polymers and other material classes is presented. Finally, the first commercial available systems are summarized showing the way for future developments in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cp:

Cyclopentadiene

DA:

Diels-Alder

DCPD:

Dicyclopentadiene

EHM:

Eisenberg-Hird-Moore model

ENB:

5-Ethylidene-2-norbornene

hDA:

Hetero Diels-Alder

IR:

Infrared spectroscopy

Mebip:

2,6-Bis(methylbenzimidazolyl)pyridine

NMR:

Nuclear magnetic resonance spectroscopy

PEG:

Poly(ethylene glycol)

PIB:

Poly(isobutylene)

PPG:

Poly(propylene glycol)

RAFT:

Reversible addition-fragmentation chain transfer

ROMP:

Ring-opening metathesis polymerization

SAXS:

Small angle X-ray scattering

TDCB:

Tapered double cantilever beam

TEMPO:

2,2,6,6-Tetramethylpiperidinyl-1-oxy

References

  1. K. Liu, J. Du, J. Wu, L. Jiang, Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials. Nanoscale 4(3), 768–772 (2012). https://doi.org/10.1039/C1NR11369K

    Article  CAS  PubMed  Google Scholar 

  2. N. Du, X.Y. Liu, J. Narayanan, L. Li, M.L.M. Lim, D. Li, Design of superior spider silk: from nanostructure to mechanical properties. Biophys. J. 91(12), 4528–4535 (2006). https://doi.org/10.1529/biophysj.106.089144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015). https://doi.org/10.1038/nmat4089

    Article  CAS  PubMed  Google Scholar 

  4. P. Fratzl, Biomimetic materials research: what can we really learn from nature’s structural materials? J. R. Soc. Interface 4(15), 637–642 (2007). https://doi.org/10.1098/rsif.2007.0218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. B. Bhushan, Biomimetics: lessons from nature–an overview. Philos. Trans. R. Soc. A 367(1893), 1445–1486 (2009). https://doi.org/10.1098/rsta.2009.0011

    Article  CAS  Google Scholar 

  6. P.H. Jørgensen, C. Bang, T.T. Andreassen, Mechanical properties of skin graft wounds. Brit J Plast Surg 46(7), 565–569 (1993). https://doi.org/10.1016/0007-1226(93)90106-L

    Article  PubMed  Google Scholar 

  7. B. McKibbin, Biology of fracture healing in long bones. J. Bone Joint Surg. Brit. 60, 150–162 (1978)

    Article  PubMed  Google Scholar 

  8. B.A. Uthgenannt, M.H. Kramer, J.A. Hwu, B. Wopenka, M.J. Silva, Skeletal self-repair: stress fracture healing by rapid formation and densification of woven bone. J. Bone Miner. Res. 22(10), 1548–1556 (2007). https://doi.org/10.1359/jbmr.0070614

    Article  PubMed  Google Scholar 

  9. Z. Rapti, A. Smerzi, K.Ø. Rasmussen, A.R. Bishop, C.H. Choi, A. Usheva, Healing length and bubble formation in DNA. Phys. Rev. E 73(5), 051902 (2006)

    Article  CAS  Google Scholar 

  10. J. Komenda, F. Michoux, P.J. Nixon, Keeping the green world alive: the repair cycle, in Self-Healing at the Nanoscale, ed. by V. Amendola, M. Meneghetti (Taylor & Francis Group, Boca Raton, 2012), pp. 3–22

    Google Scholar 

  11. M. Kragl, D. Knapp, E. Nacu, S. Khattak, M. Maden, H.H. Epperlein, E.M. Tanaka, Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460(7251), 60–65 (2009). https://doi.org/10.1038/nature08152

    Article  CAS  PubMed  Google Scholar 

  12. M.R.J. Carlson, S.V. Bryant, D.M. Gardiner, Expression of Msx-2 during development, regeneration, and wound healing in axolotl limbs. J. Exp. Zool. 282(6), 715–723 (1998). https://doi.org/10.1002/(SICI)1097-010X(19981215)282:6<715::AID-JEZ7>3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  13. R.S. Trask, H.R. Williams, I.P. Bond, Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir. Biomim. 2(1), P1 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. X. Yin, Z. Liu, D. Wang, X. Pei, B. Yu, F. Zhou, Bioinspired self-healing organic materials: chemical mechanisms and fabrications. J. Bionic. Eng. 12(1), 1–16 (2015). https://doi.org/10.1016/S1672-6529(14)60095-0

    Article  Google Scholar 

  15. S. van der Zwaag, N.H. van Dijk, H.M. Jonkers, S.D. Mookhoek, W.G. Sloof, Self-healing behaviour in man-made engineering materials: bioinspired but taking into account their intrinsic character. Philos. Trans. R. Soc. A 367(1894), 1689–1704 (2009). https://doi.org/10.1098/rsta.2009.0020

    Article  Google Scholar 

  16. C.J. Norris, G.J. Meadway, M.J. O'Sullivan, I.P. Bond, R.S. Trask, Self-healing fibre reinforced composites via a bioinspired vasculature. Adv. Funct. Mater. 21(19), 3624–3633 (2011). https://doi.org/10.1002/adfm.201101100

    Article  CAS  Google Scholar 

  17. M.D. Hager, P. Greil, C. Leyens, S. van der Zwaag, U.S. Schubert, Self-healing materials. Adv. Mater. 22(47), 5424–5430 (2010). https://doi.org/10.1002/adma.201003036

    Article  CAS  PubMed  Google Scholar 

  18. S.J. García, H.R. Fischer, S. van der Zwaag, A critical appraisal of the potential of self healing polymeric coatings. Prog. Org. Coat. 72(3), 211–221 (2011). https://doi.org/10.1016/j.porgcoat.2011.06.016

    Article  CAS  Google Scholar 

  19. S. Billiet, X.K.D. Hillewaere, R.F.A. Teixeira, F.E. Du Prez, Chemistry of crosslinking processes for self-healing polymers. Macromol. Rapid Commun. 34(4), 290–309 (2013). https://doi.org/10.1002/marc.201200689

    Article  CAS  PubMed  Google Scholar 

  20. X.K.D. Hillewaere, F.E. Du Prez, Fifteen chemistries for autonomous external self-healing polymers and composites. Prog. Polym. Sci. 49–50, 121–153 (2015). https://doi.org/10.1016/j.progpolymsci.2015.04.004

    Article  CAS  Google Scholar 

  21. S.J. Garcia, Effect of polymer architecture on the intrinsic self-healing character of polymers. Eur. Polym. J. 53, 118–125 (2014). https://doi.org/10.1016/j.eurpolymj.2014.01.026

    Article  CAS  Google Scholar 

  22. S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan, Autonomic healing of polymer composites. Nature 409(6822), 794–797 (2001). https://doi.org/10.1038/35057232

    Article  CAS  PubMed  Google Scholar 

  23. M.D. Chipara, M. Chipara, E. Shansky, J.M. Zaleski, Self-healing of high elasticity block copolymers. Polym. Adv. Technol. 20(4), 427–431 (2009). https://doi.org/10.1002/pat.1296

    Article  CAS  Google Scholar 

  24. C.L. Mangun, A.C. Mader, N.R. Sottos, S.R. White, Self-healing of a high temperature cured epoxy using poly(dimethylsiloxane) chemistry. Polymer 51(18), 4063–4068 (2010). https://doi.org/10.1016/j.polymer.2010.06.050

    Article  CAS  Google Scholar 

  25. S.H. Cho, H.M. Andersson, S.R. White, N.R. Sottos, P.V. Braun, Polydimethylsiloxane-based self-healing materials. Adv. Mater. 18(8), 997–1000 (2006). https://doi.org/10.1002/adma.200501814

    Article  CAS  Google Scholar 

  26. M.W. Keller, S.R. White, N.R. Sottos, A self-healing poly(dimethyl siloxane) elastomer. Adv. Funct. Mater. 17(14), 2399–2404 (2007). https://doi.org/10.1002/adfm.200700086

    Article  CAS  Google Scholar 

  27. M.W. Keller, S.R. White, N.R. Sottos, Torsion fatigue response of self-healing poly(dimethylsiloxane) elastomers. Polymer 49(13–14), 3136–3145 (2008). https://doi.org/10.1016/j.polymer.2008.04.041

    Article  CAS  Google Scholar 

  28. Y. Tao, Z. Lin, R. Min Zhi, Z. Ming Qiu, Self-healing woven glass fabric/epoxy composites with the healant consisting of micro-encapsulated epoxy and latent curing agent. Smart Mater. Struct. 17(1), 015019 (2008)

    Article  Google Scholar 

  29. T.S. Coope, U.F.J. Mayer, D.F. Wass, R.S. Trask, I.P. Bond, Self-healing of an epoxy resin using scandium(III) triflate as a catalytic curing agent. Adv. Funct. Mater. 21(24), 4624–4631 (2011). https://doi.org/10.1002/adfm.201101660

    Article  CAS  Google Scholar 

  30. C.J. Hansen, S.R. White, N.R. Sottos, J.A. Lewis, Accelerated self-healing via ternary interpenetrating microvascular networks. Adv. Funct. Mater. 21(22), 4320–4326 (2011). https://doi.org/10.1002/adfm.201101553

    Article  CAS  Google Scholar 

  31. K.S. Toohey, C.J. Hansen, J.A. Lewis, S.R. White, N.R. Sottos, Delivery of two-part self-healing chemistry via microvascular networks. Adv. Funct. Mater. 19(9), 1399–1405 (2009). https://doi.org/10.1002/adfm.200801824

    Article  CAS  Google Scholar 

  32. C.J. Hansen, W. Wu, K.S. Toohey, N.R. Sottos, S.R. White, J.A. Lewis, Self-healing materials with interpenetrating microvascular networks. Adv. Mater. 21(41), 4143–4147 (2009). https://doi.org/10.1002/adma.200900588

    Article  CAS  Google Scholar 

  33. Y.C. Yuan, X.J. Ye, M.Z. Rong, M.Q. Zhang, G.C. Yang, J.Q. Zhao, Self-healing epoxy composite with heat-resistant healant. ACS Appl. Mater. Interfaces 3(11), 4487–4495 (2011). https://doi.org/10.1021/am201182j

    Article  CAS  PubMed  Google Scholar 

  34. Y. Yan Chao, Y. Yueping, R. Min Zhi, C. Haibin, W. Jingshen, Z. Ming Qiu, Q. Shi Xiang, Y. Gui Cheng, Self-healing of low-velocity impact damage in glass fabric/epoxy composites using an epoxy–mercaptan healing agent. Smart Mater. Struct. 20(1), 015024 (2011)

    Article  Google Scholar 

  35. Y.C. Yuan, M.Z. Rong, M.Q. Zhang, G.C. Yang, Study of factors related to performance improvement of self-healing epoxy based on dual encapsulated healant. Polymer 50(24), 5771–5781 (2009). https://doi.org/10.1016/j.polymer.2009.10.019

    Article  CAS  Google Scholar 

  36. Y.C. Yuan, M.Z. Rong, M.Q. Zhang, J. Chen, G.C. Yang, X.M. Li, Self-healing polymeric materials using epoxy/mercaptan as the healant. Macromolecules 41(14), 5197–5202 (2008). https://doi.org/10.1021/ma800028d

    Article  CAS  Google Scholar 

  37. S. Billiet, W. Van Camp, X.K.D. Hillewaere, H. Rahier, F.E. Du Prez, Development of optimized autonomous self-healing systems for epoxy materials based on maleimide chemistry. Polymer 53(12), 2320–2326 (2012). https://doi.org/10.1016/j.polymer.2012.03.061

    Article  CAS  Google Scholar 

  38. X.K.D. Hillewaere, R.F.A. Teixeira, L.-T.T. Nguyen, J.A. Ramos, H. Rahier, F.E. Du Prez, Autonomous self-healing of epoxy thermosets with thiol-isocyanate chemistry. Adv. Funct. Mater. 24(35), 5575–5583 (2014). https://doi.org/10.1002/adfm.201400580

    Article  CAS  Google Scholar 

  39. M. Gragert, M. Schunack, W.H. Binder, Azide/alkyne-“click”-reactions of encapsulated reagents: toward self-healing materials. Macromol. Rapid Commun. 32(5), 419–425 (2011). https://doi.org/10.1002/marc.201000687

    Article  CAS  PubMed  Google Scholar 

  40. S.R. White, J.S. Moore, N.R. Sottos, B.P. Krull, W.A. Santa Cruz, R.C.R. Gergely, Restoration of large damage volumes in polymers. Science 344(6184), 620–623 (2014). https://doi.org/10.1126/science.1251135

    Article  CAS  PubMed  Google Scholar 

  41. L.M. Meng, Y.C. Yuan, M.Z. Rong, M.Q. Zhang, A dual mechanism single-component self-healing strategy for polymers. J. Mater. Chem. 20(29), 6030–6038 (2010). https://doi.org/10.1039/C0JM00268B

    Article  CAS  Google Scholar 

  42. A.M. Peterson, R.E. Jensen, G.R. Palmese, Room-temperature healing of a thermosetting polymer using the Diels−Alder reaction. ACS Appl. Mater. Interfaces 2(4), 1141–1149 (2010). https://doi.org/10.1021/am9009378

    Article  CAS  PubMed  Google Scholar 

  43. P.A. Pratama, M. Sharifi, A.M. Peterson, G.R. Palmese, Room temperature self-healing thermoset based on the Diels–Alder reaction. ACS Appl. Mater. Interfaces 5(23), 12425–12431 (2013). https://doi.org/10.1021/am403459e

    Article  CAS  PubMed  Google Scholar 

  44. P.A. Pratama, A.M. Peterson, G.R. Palmese, The role of maleimide structure in the healing of furan-functionalized epoxy-amine thermosets. Polym. Chem. 4(18), 5000–5006 (2013). https://doi.org/10.1039/C3PY00084B

    Article  CAS  Google Scholar 

  45. N.W. Khun, D.W. Sun, M.X. Huang, J.L. Yang, C.Y. Yue, Wear resistant epoxy composites with diisocyanate-based self-healing functionality. Wear 313(1–2), 19–28 (2014). https://doi.org/10.1016/j.wear.2014.02.011

    Article  CAS  Google Scholar 

  46. J.F. Patrick, N.R. Sottos, S.R. White, Microvascular based self-healing polymeric foam. Polymer 53(19), 4231–4240 (2012). https://doi.org/10.1016/j.polymer.2012.07.021

    Article  CAS  Google Scholar 

  47. S.M. Bleay, C.B. Loader, V.J. Hawyes, L. Humberstone, P.T. Curtis, A smart repair system for polymer matrix composites. Compos. A: Appl. Sci. Manufact. 32(12), 1767–1776 (2001). https://doi.org/10.1016/S1359-835X(01)00020-3

    Article  Google Scholar 

  48. F. Omosola, R. Kevin, B. Biswajit, Glass fibre polyester composite with in vivo vascular channel for use in self-healing. Smart Mater. Struct. 23(9), 095017 (2014)

    Article  Google Scholar 

  49. M. Motuku, U.K. Vaidya, G.M. Janowski, Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact. Smart Mater. Struct. 8(5), 623 (1999)

    Article  CAS  Google Scholar 

  50. S. Zainuddin, T. Arefin, A. Fahim, M.V. Hosur, J.D. Tyson, A. Kumar, J. Trovillion, S. Jeelani, Recovery and improvement in low-velocity impact properties of e-glass/epoxy composites through novel self-healing technique. Compos. Struct. 108, 277–286 (2014). https://doi.org/10.1016/j.compstruct.2013.09.023

    Article  Google Scholar 

  51. X. Chen, F. Wudl, A.K. Mal, H. Shen, S.R. Nutt, New thermally remendable highly cross-linked polymeric materials. Macromolecules 36(6), 1802–1807 (2003). https://doi.org/10.1021/ma0210675

    Article  CAS  Google Scholar 

  52. X. Chen, M.A. Dam, K. Ono, A. Mal, H. Shen, S.R. Nutt, K. Sheran, F. Wudl, A thermally re-mendable cross-linked polymeric material. Science 295(5560), 1698–1702 (2002). https://doi.org/10.1126/science.1065879

    Article  CAS  PubMed  Google Scholar 

  53. N. Bai, K. Saito, G.P. Simon, Synthesis of a diamine cross-linker containing Diels-Alder adducts to produce self-healing thermosetting epoxy polymer from a widely used epoxy monomer. Polym. Chem. 4(3), 724–730 (2013). https://doi.org/10.1039/C2PY20611K

    Article  CAS  Google Scholar 

  54. P. Du, M. Wu, X. Liu, Z. Zheng, X. Wang, T. Joncheray, Y. Zhang, Diels–Alder-based crosslinked self-healing polyurethane/urea from polymeric methylene diphenyl diisocyanate. J. Appl. Polym. Sci. 131(9) (2014). https://doi.org/10.1002/app.40234

    Google Scholar 

  55. P. Du, X. Liu, Z. Zheng, X. Wang, T. Joncheray, Y. Zhang, Synthesis and characterization of linear self-healing polyurethane based on thermally reversible Diels-Alder reaction. RSC Adv. 3(35), 15475–15482 (2013). https://doi.org/10.1039/C3RA42278J

    Article  CAS  Google Scholar 

  56. M.J. Barthel, T. Rudolph, A. Teichler, R.M. Paulus, J. Vitz, S. Hoeppener, M.D. Hager, F.H. Schacher, U.S. Schubert, Self-healing materials via reversible crosslinking of poly(ethylene oxide)-block-poly(furfuryl glycidyl ether) (PEO-b-PFGE) block copolymer films. Adv. Funct. Mater. 23(39), 4921–4932 (2013). https://doi.org/10.1002/adfm.201300469

    Article  CAS  Google Scholar 

  57. R.K. Bose, J. Kötteritzsch, S.J. Garcia, M.D. Hager, U.S. Schubert, S. van der Zwaag, A rheological and spectroscopic study on the kinetics of self-healing in a single-component diels–alder copolymer and its underlying chemical reaction. J. Polym. Sci. Part A: Polym. Chem. 52(12), 1669–1675 (2014). https://doi.org/10.1002/pola.27164

    Article  CAS  Google Scholar 

  58. J. Kötteritzsch, M.D. Hager, U.S. Schubert, Tuning the self-healing behavior of one-component intrinsic polymers. Polymer 69, 321–329 (2015). https://doi.org/10.1016/j.polymer.2015.03.027

    Article  CAS  Google Scholar 

  59. J. Kötteritzsch, S. Stumpf, S. Hoeppener, J. Vitz, M.D. Hager, U.S. Schubert, One-component intrinsic self-healing coatings based on reversible crosslinking by Diels–Alder cycloadditions. Macromol. Chem. Phys. 214(14), 1636–1649 (2013). https://doi.org/10.1002/macp.201200712

    Article  CAS  Google Scholar 

  60. N. Yoshie, S. Saito, N. Oya, A thermally-stable self-mending polymer networked by Diels–Alder cycloaddition. Polymer 52(26), 6074–6079 (2011). https://doi.org/10.1016/j.polymer.2011.11.007

    Article  CAS  Google Scholar 

  61. E.B. Murphy, E. Bolanos, C. Schaffner-Hamann, F. Wudl, S.R. Nutt, M.L. Auad, Synthesis and characterization of a single-component thermally remendable polymer network: staudinger and Stille revisited. Macromolecules 41(14), 5203–5209 (2008). https://doi.org/10.1021/ma800432g

    Article  CAS  Google Scholar 

  62. P. Reutenauer, E. Buhler, P.J. Boul, S.J. Candau, J.M. Lehn, Room temperature dynamic polymers based on Diels–Alder chemistry. Chem. Eur. J. 15(8), 1893–1900 (2009). https://doi.org/10.1002/chem.200802145

    Article  CAS  PubMed  Google Scholar 

  63. K.K. Oehlenschlaeger, J.O. Mueller, J. Brandt, S. Hilf, A. Lederer, M. Wilhelm, R. Graf, M.L. Coote, F.G. Schmidt, C. Barner-Kowollik, Adaptable hetero Diels–Alder networks for fast self-healing under mild conditions. Adv. Mater. 26(21), 3561–3566 (2014). https://doi.org/10.1002/adma.201306258

    Article  CAS  PubMed  Google Scholar 

  64. J. Ling, M.Z. Rong, M.Q. Zhang, Coumarin imparts repeated photochemical remendability to polyurethane. J. Mater. Chem. 21(45), 18373–18380 (2011). https://doi.org/10.1039/C1JM13467A

    Article  CAS  Google Scholar 

  65. J. Ling, M.Z. Rong, M.Q. Zhang, Photo-stimulated self-healing polyurethane containing dihydroxyl coumarin derivatives. Polymer 53(13), 2691–2698 (2012). https://doi.org/10.1016/j.polymer.2012.04.016

    Article  CAS  Google Scholar 

  66. C.-M. Chung, Y.-S. Roh, S.-Y. Cho, J.-G. Kim, Crack healing in polymeric materials via photochemical [2+2] cycloaddition. Chem. Mater. 16(21), 3982–3984 (2004). https://doi.org/10.1021/cm049394+

    Article  CAS  Google Scholar 

  67. P. Froimowicz, H. Frey, K. Landfester, Towards the generation of self-healing materials by means of a reversible photo-induced approach. Macromol. Rapid Commun. 32(5), 468–473 (2011). https://doi.org/10.1002/marc.201000643

    Article  CAS  PubMed  Google Scholar 

  68. N. Kuhl, S. Bode, R.K. Bose, J. Vitz, A. Seifert, S. Hoeppener, S.J. Garcia, S. Spange, S. van der Zwaag, M.D. Hager, U.S. Schubert, Acylhydrazones as reversible covalent crosslinkers for self-healing polymers. Adv. Funct. Mater. 25(22), 3295–3301 (2015). https://doi.org/10.1002/adfm.201501117

    Article  CAS  Google Scholar 

  69. H. Li, J. Bai, Z. Shi, J. Yin, Environmental friendly polymers based on schiff-base reaction with self-healing, remolding and degradable ability. Polymer 85, 106–113 (2016). https://doi.org/10.1016/j.polymer.2016.01.050

    Article  CAS  Google Scholar 

  70. J. Canadell, H. Goossens, B. Klumperman, Self-healing materials based on disulfide links. Macromolecules 44(8), 2536–2541 (2011). https://doi.org/10.1021/ma2001492

    Article  CAS  Google Scholar 

  71. M. Pepels, I. Filot, B. Klumperman, H. Goossens, Self-healing systems based on disulfide-thiol exchange reactions. Polym. Chem. 4(18), 4955–4965 (2013). https://doi.org/10.1039/C3PY00087G

    Article  CAS  Google Scholar 

  72. U. Lafont, H. van Zeijl, S. van der Zwaag, Influence of cross-linkers on the cohesive and adhesive self-healing ability of polysulfide-based thermosets. ACS Appl. Mater. Interfaces 4(11), 6280–6288 (2012). https://doi.org/10.1021/am301879z

    Article  CAS  PubMed  Google Scholar 

  73. Z.Q. Lei, H.P. Xiang, Y.J. Yuan, M.Z. Rong, M.Q. Zhang, Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds. Chem. Mater. 26(6), 2038–2046 (2014). https://doi.org/10.1021/cm4040616

    Article  CAS  Google Scholar 

  74. R. Martin, A. Rekondo, A. Ruiz de Luzuriaga, G. Cabanero, H.J. Grande, I. Odriozola, The processability of a poly(urea-urethane) elastomer reversibly crosslinked with aromatic disulfide bridges. J. Mater. Chem. A 2(16), 5710–5715 (2014). https://doi.org/10.1039/C3TA14927G

    Article  CAS  Google Scholar 

  75. A. Rekondo, R. Martin, A. Ruiz de Luzuriaga, G. Cabanero, H.J. Grande, I. Odriozola, Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz 1(2), 237–240 (2014). https://doi.org/10.1039/C3MH00061C

    Article  CAS  Google Scholar 

  76. J.A. Yoon, J. Kamada, K. Koynov, J. Mohin, R. Nicolaÿ, Y. Zhang, A.C. Balazs, T. Kowalewski, K. Matyjaszewski, Self-healing polymer films based on thiol–disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45(1), 142–149 (2012). https://doi.org/10.1021/ma2015134

    Article  CAS  Google Scholar 

  77. Y. Amamoto, H. Otsuka, A. Takahara, K. Matyjaszewski, Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv. Mater. 24(29), 3975–3980 (2012). https://doi.org/10.1002/adma.201201928

    Article  CAS  PubMed  Google Scholar 

  78. A.Z.M. Esteves AC, S. van der Zwaag, S.J. Garcia, Healable dual organic–inorganic crosslinked sol–gel based polymers: crosslinking density and tetrasulfide content effect. J. Polym. Sci. Part A: Polym. Chem. 52(14), 1953–1961 (2014). https://doi.org/10.1002/pola.27200

    Article  CAS  Google Scholar 

  79. H. Ying, Y. Zhang, J. Cheng, Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 5 (2014). https://doi.org/10.1038/ncomms4218

  80. F. Wang, M.Z. Rong, M.Q. Zhang, Reversibility of solid state radical reactions in thermally remendable polymers with C-ON bonds. J. Mater. Chem. 22(26), 13076–13084 (2012). https://doi.org/10.1039/C2JM30578J

    Article  CAS  Google Scholar 

  81. Y. Ce, M.Z. Rong, M.Q. Zhang, Z.P. Zhang, Y.C. Yuan, Self-healing of polymers via synchronous covalent bond fission/radical recombination. Chem. Mater. 23(22), 5076–5081 (2011). https://doi.org/10.1021/cm202635w

    Article  CAS  Google Scholar 

  82. Y. Ce, M.Z. Rong, M.Q. Zhang, Self-healing polyurethane elastomer with thermally reversible alkoxyamines as crosslinkages. Polymer 55(7), 1782–1791 (2014). https://doi.org/10.1016/j.polymer.2014.02.033

    Article  CAS  Google Scholar 

  83. K. Imato, M. Nishihara, T. Kanehara, Y. Amamoto, A. Takahara, H. Otsuka, Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature. Angew. Chem. Int. Ed. 51(5), 1138–1142 (2012). https://doi.org/10.1002/anie.201104069

    Article  CAS  Google Scholar 

  84. M. Capelot, D. Montarnal, F. Tournilhac, L. Leibler, Metal-catalyzed transesterification for healing and assembling of thermosets. J. Am. Chem. Soc. 134(18), 7664–7667 (2012). https://doi.org/10.1021/ja302894k

    Article  CAS  PubMed  Google Scholar 

  85. D. Montarnal, M. Capelot, F. Tournilhac, L. Leibler, Silica-like malleable materials from permanent organic networks. Science 334(6058), 965–968 (2011). https://doi.org/10.1126/science.1212648

    Article  CAS  PubMed  Google Scholar 

  86. J.J. Cash, T. Kubo, A.P. Bapat, B.S. Sumerlin, Room-temperature self-healing polymers based on dynamic-covalent boronic esters. Macromolecules 48(7), 2098–2106 (2015). https://doi.org/10.1021/acs.macromol.5b00210

    Article  CAS  Google Scholar 

  87. O.R. Cromwell, J. Chung, Z. Guan, Malleable and self-healing covalent polymer networks through tunabled dynamic boronic ester bonds. J. Am. Chem. Soc. 137(20), 6492–6495 (2015). https://doi.org/10.1021/jacs.5b03551

    Article  CAS  PubMed  Google Scholar 

  88. D. Döhler, H. Peterlik, W.H. Binder, A dual crosslinked self-healing system: supramolecular and covalent network formation of four-arm star polymers. Polymer 69, 264–273 (2015). https://doi.org/10.1016/j.polymer.2015.01.073

    Article  CAS  Google Scholar 

  89. F. Herbst, S. Seiffert, W.H. Binder, Dynamic supramolecular poly(isobutylene)s for self-healing materials. Polym. Chem. 3(11), 3084–3092 (2012). https://doi.org/10.1039/C2PY20265D

    Article  CAS  Google Scholar 

  90. S. Chen, N. Mahmood, M. Beiner, W.H. Binder, Self-healing materials from V- and H-shaped supramolecular architectures. Angew. Chem. Int. Ed. 54(35), 10188–10192 (2015). https://doi.org/10.1002/anie.201504136

    Article  CAS  Google Scholar 

  91. Y. Chen, Z. Guan, Self-healing thermoplastic elastomer brush copolymers having a glassy polymethylmethacrylate backbone and rubbery polyacrylate-amide brushes. Polymer 69, 249–254 (2015). https://doi.org/10.1016/j.polymer.2015.03.023

    Article  CAS  Google Scholar 

  92. M. Yan, J. Tang, H.-L. Xie, B. Ni, H.-L. Zhang, E.-Q. Chen, Self-healing and phase behavior of liquid crystalline elastomer based on a block copolymer constituted of a side-chain liquid crystalline polymer and a hydrogen bonding block. J. Mater. Chem. C 3(33), 8526–8534 (2015). https://doi.org/10.1039/C5TC01603G

    Article  CAS  Google Scholar 

  93. Y. Chen, A.M. Kushner, G.A. Williams, Z. Guan, Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 4(6), 467–472 (2012). https://doi.org/10.1038/nchem.1314

    Article  CAS  PubMed  Google Scholar 

  94. N. Roy, E. Buhler, J.-M. Lehn, The tris-urea motif and its incorporation into polydimethylsiloxane-based supramolecular materials presenting self-healing features. Chem. Eur. J. 19(27), 8814–8820 (2013). https://doi.org/10.1002/chem.201203518

    Article  CAS  PubMed  Google Scholar 

  95. P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451(7181), 977–980 (2008). https://doi.org/10.1038/nature06669

    Article  CAS  PubMed  Google Scholar 

  96. D. Montarnal, P. Cordier, C. Soulié-Ziakovic, F. Tournilhac, L. Leibler, Synthesis of self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea. J. Polym. Sci. Part A: Polym. Chem. 46(24), 7925–7936 (2008). https://doi.org/10.1002/pola.23094

    Article  CAS  Google Scholar 

  97. A. Faghihnejad, K.E. Feldman, J. Yu, M.V. Tirrell, J.N. Israelachvili, C.J. Hawker, E.J. Kramer, H. Zeng, Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups. Adv. Funct. Mater. 24(16), 2322–2333 (2014). https://doi.org/10.1002/adfm.201303013

    Article  CAS  Google Scholar 

  98. R. Chang, Y. Huang, G. Shan, Y. Bao, X. Yun, T. Dong, P. Pan, Alternating poly(lactic acid)/poly(ethylene-co-butylene) supramolecular multiblock copolymers with tunable shape memory and self-healing properties. Polym. Chem. 6(32), 5899–5910 (2015). https://doi.org/10.1039/C5PY00742A

    Article  CAS  Google Scholar 

  99. J. Hentschel, A.M. Kushner, J. Ziller, Z. Guan, Self-healing supramolecular block copolymers. Angew. Chem. Int. Ed. 51(42), 10561–10565 (2012). https://doi.org/10.1002/anie.201204840

    Article  CAS  Google Scholar 

  100. S. Burattini, H.M. Colquhoun, B.W. Greenland, W. Hayes, A novel self-healing supramolecular polymer system. Faraday Discuss. 143(1), 251–264 (2009). https://doi.org/10.1039/B900859D

    Article  CAS  PubMed  Google Scholar 

  101. S. Burattini, B.W. Greenland, D.H. Merino, W. Weng, J. Seppala, H.M. Colquhoun, W. Hayes, M.E. Mackay, I.W. Hamley, S.J. Rowan, A healable supramolecular polymer blend based on aromatic π−π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 132(34), 12051–12058 (2010). https://doi.org/10.1021/ja104446r

    Article  CAS  PubMed  Google Scholar 

  102. S. Burattini, B.W. Greenland, W. Hayes, M.E. Mackay, S.J. Rowan, H.M. Colquhoun, A supramolecular polymer based on tweezer-type π−π stacking interactions: molecular design for healability and enhanced toughness. Chem. Mater. 23(1), 6–8 (2011). https://doi.org/10.1021/cm102963k

    Article  CAS  Google Scholar 

  103. S.J. Kalista, T.C. Ward, Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers. J. R. Soc. Interface 4(13), 405–411 (2007). https://doi.org/10.1098/rsif.2006.0169

    Article  CAS  PubMed  Google Scholar 

  104. S.J. Kalista, J.R. Pflug, R.J. Varley, Effect of ionic content on ballistic self-healing in EMAA copolymers and ionomers. Polym. Chem. 4(18), 4910–4926 (2013). https://doi.org/10.1039/C3PY00095H

    Article  CAS  Google Scholar 

  105. S.J. Kalista, T.C. Ward, Z. Oyetunji, Self-healing of poly(ethylene-co-methacrylic acid) copolymers following projectile puncture. Mech. Adv. Mater. Struct. 14(5), 391–397 (2007). https://doi.org/10.1080/15376490701298819

    Article  CAS  Google Scholar 

  106. R.J. Varley, S. van der Zwaag, Development of a quasi-static test method to investigate the origin of self-healing in ionomers under ballistic conditions. Polym. Test. 27(1), 11–19 (2008). https://doi.org/10.1016/j.polymertesting.2007.07.013

    Article  CAS  Google Scholar 

  107. R.J. Varley, S. van der Zwaag, Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration. Acta Mater. 56(19), 5737–5750 (2008). https://doi.org/10.1016/j.actamat.2008.08.008

    Article  CAS  Google Scholar 

  108. R.K. Bose, N. Hohlbein, S.J. Garcia, A.M. Schmidt, S. van der Zwaag, Connecting supramolecular bond lifetime and network mobility for scratch healing in poly(butyl acrylate) ionomers containing sodium, zinc and cobalt. Phys. Chem. Chem. Phys. 17(3), 1697–1704 (2015). https://doi.org/10.1039/C4CP04015E

    Article  CAS  PubMed  Google Scholar 

  109. R.K. Bose, N. Hohlbein, S.J. Garcia, A.M. Schmidt, S. van der Zwaag, Relationship between the network dynamics, supramolecular relaxation time and healing kinetics of cobalt poly(butyl acrylate) ionomers. Polymer 69, 228–232 (2015). https://doi.org/10.1016/j.polymer.2015.03.049

    Article  CAS  Google Scholar 

  110. N. Hohlbein, A. Shaaban, A.M. Schmidt, Remote-controlled activation of self-healing behavior in magneto-responsive ionomeric composites. Polymer 69, 301–309 (2015). https://doi.org/10.1016/j.polymer.2015.04.024

    Article  CAS  Google Scholar 

  111. S. Bode, R.K. Bose, S. Matthes, M. Ehrhardt, A. Seifert, F.H. Schacher, R.M. Paulus, S. Stumpf, B. Sandmann, J. Vitz, A. Winter, S. Hoeppener, S.J. Garcia, S. Spange, S. van der Zwaag, M.D. Hager, U.S. Schubert, Self-healing metallopolymers based on cadmium bis(terpyridine) complex containing polymer networks. Polym. Chem. 4(18), 4966–4973 (2013). https://doi.org/10.1039/C3PY00288H

    Article  CAS  Google Scholar 

  112. S. Bode, L. Zedler, F.H. Schacher, B. Dietzek, M. Schmitt, J. Popp, M.D. Hager, U.S. Schubert, Self-healing polymer coatings based on crosslinked metallosupramolecular copolymers. Adv. Mater. 25(11), 1634–1638 (2013). https://doi.org/10.1002/adma.201203865

    Article  CAS  PubMed  Google Scholar 

  113. S. Bode, M. Enke, R.K. Bose, F.H. Schacher, S.J. Garcia, S. van der Zwaag, M.D. Hager, U.S. Schubert, Correlation between scratch healing and rheological behavior for terpyridine complex based metallopolymers. J. Mater. Chem. A 3(44), 22145–22153 (2015). https://doi.org/10.1039/C5TA05545H

    Article  CAS  Google Scholar 

  114. M. Burnworth, L. Tang, J.R. Kumpfer, A.J. Duncan, F.L. Beyer, G.L. Fiore, S.J. Rowan, C. Weder, Optically healable supramolecular polymers. Nature 472(7343), 334–337 (2011). https://doi.org/10.1038/nature09963

    Article  CAS  PubMed  Google Scholar 

  115. S. Coulibaly, A. Roulin, S. Balog, M.V. Biyani, E.J. Foster, S.J. Rowan, G.L. Fiore, C. Weder, Reinforcement of optically healable supramolecular polymers with cellulose nanocrystals. Macromolecules 47(1), 152–160 (2014). https://doi.org/10.1021/ma402143c

    Article  CAS  Google Scholar 

  116. M. Enke, S. Bode, J. Vitz, F.H. Schacher, M.J. Harrington, M.D. Hager, U.S. Schubert, Self-healing response in supramolecular polymers based on reversible zinc–histidine interactions. Polymer 69, 274–282 (2015). https://doi.org/10.1016/j.polymer.2015.03.068

    Article  CAS  Google Scholar 

  117. D. Mozhdehi, S. Ayala, O.R. Cromwell, Z. Guan, Self-healing multiphase polymers via dynamic metal–ligand interactions. J. Am. Chem. Soc. 136(46), 16128–16131 (2014). https://doi.org/10.1021/ja5097094

    Article  CAS  PubMed  Google Scholar 

  118. F. Zeng, Y. Han, Z.-C. Yan, C.-Y. Liu, C.-F. Chen, Supramolecular polymer gel with multi stimuli responsive, self-healing and erasable properties generated by host–guest interactions. Polymer 54(26), 6929–6935 (2013). https://doi.org/10.1016/j.polymer.2013.10.048

    Article  CAS  Google Scholar 

  119. S. Li, H.-Y. Lu, Y. Shen, C.-F. Chen, A stimulus-response and self-healing supramolecular polymer gel based on host–guest interactions. Macromol. Chem. Phys. 214(14), 1596–1601 (2013). https://doi.org/10.1002/macp.201300229

    Article  CAS  Google Scholar 

  120. M. Zhang, D. Xu, X. Yan, J. Chen, S. Dong, B. Zheng, F. Huang, Self-healing supramolecular gels formed by crown ether based host–guest interactions. Angew. Chem. Int. Ed. 51(28), 7011–7015 (2012). https://doi.org/10.1002/anie.201203063

    Article  CAS  Google Scholar 

  121. T.-W. Chuo, T.-C. Wei, Y.-L. Liu, Electrically driven self-healing polymers based on reversible guest–host complexation of β-cyclodextrin and ferrocene. J. Polym. Sci. Part A: Polym. Chem. 51(16), 3395–3403 (2013). https://doi.org/10.1002/pola.26736

    Article  CAS  Google Scholar 

  122. M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Redox-responsive self-healing materials formed from host–guest polymers. Nat. Commun. 2, 511 (2011). https://doi.org/10.1038/ncomms1521

    Article  CAS  PubMed  Google Scholar 

  123. T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi, A. Harada, Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host–guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 25(20), 2849–2853 (2013). https://doi.org/10.1002/adma.201205321

    Article  CAS  PubMed  Google Scholar 

  124. T. Kakuta, Y. Takashima, T. Sano, T. Nakamura, Y. Kobayashi, H. Yamaguchi, A. Harada, Adhesion between semihard polymer materials containing cyclodextrin and adamantane based on host–guest interactions. Macromolecules 48(3), 732–738 (2015). https://doi.org/10.1021/ma502316d

    Article  CAS  Google Scholar 

  125. D.J. Byrne, J. Hardy, R.A.B.. Wood, R. McIntosh, A. Cuschieri, Effect of fibrin glues on the mechanical properties of healing wounds. Br. J. Surg. 78(7), 841–843 (1991). https://doi.org/10.1002/bjs.1800780723

    Article  CAS  Google Scholar 

  126. M.B. Schaffler, E.L. Radin, D.B. Burr, Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10(3), 207–214 (1989). https://doi.org/10.1016/8756-3282(89)90055-0

    Article  CAS  PubMed  Google Scholar 

  127. I.H. Kalfas, Principles of bone healing. Neurosurg. Focus. 10(4), 1–4 (2001). https://doi.org/10.3171/foc.2001.10.4.2

    Article  Google Scholar 

  128. M.J. Harrington, H.S. Gupta, P. Fratzl, J.H. Waite, Collagen insulated from tensile damage by domains that unfold reversibly: in situ X-ray investigation of mechanical yield and damage repair in the mussel byssus. J. Struct. Biol. 167(1), 47–54 (2009). https://doi.org/10.1016/j.jsb.2009.03.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. K.S. Toohey, N.R. Sottos, J.A. Lewis, J.S. Moore, S.R. White, Self-healing materials with microvascular networks. Nat. Mater. 6(8), 581–585 (2007). https://doi.org/10.1038/nmat1934

    Article  CAS  PubMed  Google Scholar 

  130. J.W.C. Pang, I.P. Bond, A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos. Sci. Technol. 65(11–12), 1791–1799 (2005). https://doi.org/10.1016/j.compscitech.2005.03.008

    Article  CAS  Google Scholar 

  131. I.P. Bond, R.S. Trask, H.R. Williams, Self-healing fiber-reinforced polymer composites. MRS Bull. 33(08), 770–774 (2008). https://doi.org/10.1557/mrs2008.164

    Article  CAS  Google Scholar 

  132. R.S. Trask, C.J. Norris, I.P. Bond, Stimuli triggered self-healing functionality in advanced fibre reinforced composites. J. Intell. Mater. Syst. Struct. (2013). https://doi.org/10.1177/1045389x13505006

    Article  Google Scholar 

  133. T.S. Coope, D.F. Wass, R.S. Trask, I.P. Bond, Metal triflates as catalytic curing agents in self-healing fibre reinforced polymer composite materials. Macromol. Mater. Eng. 299(2), 208–218 (2014). https://doi.org/10.1002/mame.201300026

    Article  CAS  Google Scholar 

  134. A.R. Hamilton, N.R. Sottos, S.R. White, Self-healing of internal damage in synthetic vascular materials. Adv. Mater. 22(45), 5159–5163 (2010). https://doi.org/10.1002/adma.201002561

    Article  CAS  PubMed  Google Scholar 

  135. N. Kuhl, S. Bode, M.D. Hager, U.S. Schubert, Self-healing polymers based on reversible covalent bonds. Adv. Polym. Sci. (2016). https://doi.org/10.1007/12_2015_336

    Google Scholar 

  136. M. Enke, D. Döhler, S. Bode, W.H. Binder, M.D. Hager, U.S. Schubert, Intrinsic self-healing polymers based on supramolecular interactions: state of the art and future directions. Adv. Polym. Sci. (2016). https://doi.org/10.1007/12_2015_345

    Chapter  Google Scholar 

  137. P. Froimowicz, D. Klinger, K. Landfester, Photoreactive nanoparticles as nanometric building blocks for the generation of self-healing hydrogel thin films. Chem. Eur. J. 17(44), 12465–12475 (2011). https://doi.org/10.1002/chem.201100685

    Article  CAS  PubMed  Google Scholar 

  138. L. Hu, X. Cheng, A. Zhang, A facile method to prepare UV light-triggered self-healing polyphosphazenes. J. Mater. Sci. 50(5), 2239–2246 (2014). https://doi.org/10.1007/s10853-014-8786-y

    Article  CAS  Google Scholar 

  139. N. Oya, P. Sukarsaatmadja, K. Ishida, N. Yoshie, Photoinduced mendable network polymer from poly(butylene adipate) end-functionalized with cinnamoyl groups. Polym. J. 44(7), 724–729 (2012)

    Article  CAS  Google Scholar 

  140. Y.-L. Liu, T.-W. Chuo, Self-healing polymers based on thermally reversible Diels-Alder chemistry. Polym. Chem. 4(7), 2194–2205 (2013). https://doi.org/10.1039/C2PY20957H

    Article  CAS  Google Scholar 

  141. A. Gandini, The furan/maleimide Diels–Alder reaction: a versatile click–unclick tool in macromolecular synthesis. Prog. Polym. Sci. 38(1), 1–29 (2013). https://doi.org/10.1016/j.progpolymsci.2012.04.002

    Article  CAS  Google Scholar 

  142. Y.-L. Liu, C.-Y. Hsieh, Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds. J. Polym. Sci. Part A: Polym. Chem. 44(2), 905–913 (2006). https://doi.org/10.1002/pola.21184

    Article  CAS  Google Scholar 

  143. C. Zeng, H. Seino, J. Ren, K. Hatanaka, N. Yoshie, Self-healing bio-based furan polymers cross-linked with various bis-maleimides. Polymer 54(20), 5351–5357 (2013). https://doi.org/10.1016/j.polymer.2013.07.059

    Article  CAS  Google Scholar 

  144. C. Zeng, H. Seino, J. Ren, K. Hatanaka, N. Yoshie, Bio-based furan polymers with self-healing ability. Macromolecules 46(5), 1794–1802 (2013). https://doi.org/10.1021/ma3023603

    Article  CAS  Google Scholar 

  145. J.A. Syrett, G. Mantovani, W.R.S. Barton, D. Price, D.M. Haddleton, Self-healing polymers prepared via living radical polymerisation. Polym. Chem. 1(1), 102–106 (2010). https://doi.org/10.1039/B9PY00316A

    Article  CAS  Google Scholar 

  146. B.D. Fairbanks, S.P. Singh, C.N. Bowman, K.S. Anseth, Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction. Macromolecules 44(8), 2444–2450 (2011). https://doi.org/10.1021/ma200202w

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. A.P. Bapat, J.G. Ray, D.A. Savin, B.S. Sumerlin, Redox-responsive dynamic-covalent assemblies: stars and miktoarm stars. Macromolecules 46(6), 2188–2198 (2013). https://doi.org/10.1021/ma400169m

    Article  CAS  Google Scholar 

  148. N. Roy, B. Bruchmann, J.-M. Lehn, DYNAMERS: dynamic polymers as self-healing materials. Chem. Soc. Rev. 44(11), 3786–3807 (2015). https://doi.org/10.1039/C5CS00194C

    Article  CAS  PubMed  Google Scholar 

  149. M.E. Belowich, J.F. Stoddart, Dynamic imine chemistry. Chem. Soc. Rev. 41(6), 2003–2024 (2012). https://doi.org/10.1039/C2CS15305J

    Article  CAS  PubMed  Google Scholar 

  150. M. Ciaccia, S. Di Stefano, Mechanisms of imine exchange reactions in organic solvents. Org. Biomol. Chem. 13(3), 646–654 (2015). https://doi.org/10.1039/C4OB02110J

    Article  CAS  PubMed  Google Scholar 

  151. G. Schaeffer, E. Buhler, S.J. Candau, J.-M. Lehn, Double dynamic supramolecular polymers of covalent oligo-dynamers. Macromolecules 46(14), 5664–5671 (2013). https://doi.org/10.1021/ma400449u

    Article  CAS  Google Scholar 

  152. A.K.H. Hirsch, E. Buhler, J.-M. Lehn, Biodynamers: self-organization-driven formation of doubly dynamic proteoids. J. Am. Chem. Soc. 134(9), 4177–4183 (2012). https://doi.org/10.1021/ja2099134

    Article  CAS  PubMed  Google Scholar 

  153. G. Deng, C. Tang, F. Li, H. Jiang, Y. Chen, Covalent cross-linked polymer gels with reversible sol−gel transition and self-healing properties. Macromolecules 43(3), 1191–1194 (2010). https://doi.org/10.1021/ma9022197

    Article  CAS  Google Scholar 

  154. G. Deng, F. Li, H. Yu, F. Liu, C. Liu, W. Sun, H. Jiang, Y. Chen, Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol–gel transitions. ACS Macro Lett. 1(2), 275–279 (2012). https://doi.org/10.1021/mz200195n

    Article  CAS  Google Scholar 

  155. Y. Gao, Q. Luo, S. Qiao, L. Wang, Z. Dong, J. Xu, J. Liu, Enzymetically regulating the self-healing of protein hydrogels with high healing efficiency. Angew. Chem. Int. Ed. 53(35), 9343–9346 (2014). https://doi.org/10.1002/anie.201404531

    Article  CAS  Google Scholar 

  156. J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, B. Charleux, Nitroxide-mediated polymerization. Prog. Polym. Sci. 38(1), 63–235 (2013). https://doi.org/10.1016/j.progpolymsci.2012.06.002

    Article  CAS  Google Scholar 

  157. T. Janoschka, A. Teichler, B. Häupler, T. Jähnert, M.D. Hager, U.S. Schubert, Reactive inkjet printing of cathodes for organic radical batteries. Adv. Energy Mater. 3(8), 1025–1028 (2013). https://doi.org/10.1002/aenm.201300036

    Article  CAS  Google Scholar 

  158. R. Hoogenboom, Hard autonomous self-healing supramolecular materials— a contradiction in terms? Angew. Chem. Int. Ed. 51(48), 11942–11944 (2012). https://doi.org/10.1002/anie.201205226

    Article  CAS  Google Scholar 

  159. F. Herbst, D. Döhler, P. Michael, W.H. Binder, Self-healing polymers via supramolecular forces. Macromol. Rapid Commun. 34(3), 203–220 (2013). https://doi.org/10.1002/marc.201200675

    Article  CAS  PubMed  Google Scholar 

  160. J. Cortese, C. Soulié-Ziakovic, S. Tencé-Girault, L. Leibler, Suppression of mesoscopic order by complementary interactions in supramolecular polymers. J. Am. Chem. Soc. 134(8), 3671–3674 (2012). https://doi.org/10.1021/ja2119496

    Article  CAS  PubMed  Google Scholar 

  161. A.V. Ambade, S.K. Yang, M. Weck, Supramolecular ABC triblock copolymers. Angew. Chem. Int. Ed. 48(16), 2894–2898 (2009). https://doi.org/10.1002/anie.200805116

    Article  CAS  Google Scholar 

  162. S. Burattini, B.W. Greenland, D. Chappell, H.M. Colquhoun, W. Hayes, Healable polymeric materials: a tutorial review. Chem. Soc. Rev. 39(6), 1973–1985 (2010). https://doi.org/10.1039/B904502N

    Article  CAS  PubMed  Google Scholar 

  163. L.R. Hart, N.A. Nguyen, J.L. Harries, M.E. Mackay, H.M. Colquhoun, W. Hayes, Perylene as an electron-rich moiety in healable, complementary π–π stacked, supramolecular polymer systems. Polymer 69, 293–300 (2015). https://doi.org/10.1016/j.polymer.2015.03.028

    Article  CAS  Google Scholar 

  164. S. Burattini, H.M. Colquhoun, J.D. Fox, D. Friedmann, B.W. Greenland, P.J.F. Harris, W. Hayes, M.E. Mackay, S.J. Rowan, A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor [small pi]-[small pi] stacking interactions. Chem. Commun. 44, 6717–6719 (2009). https://doi.org/10.1039/B910648K

    Article  Google Scholar 

  165. J. Fox, J.J. Wie, B.W. Greenland, S. Burattini, W. Hayes, H.M. Colquhoun, M.E. Mackay, S.J. Rowan, High-strength, healable, supramolecular polymer nanocomposites. J. Am. Chem. Soc. 134(11), 5362–5368 (2012). https://doi.org/10.1021/ja300050x

    Article  CAS  PubMed  Google Scholar 

  166. http://www.dupont.com/products-and-services/plastics-polymers-resins/ethylene-copolymers/brands/nucrel-ethylene-acrylic-acid.html. (Last accessed: 13 Apr 2016)

  167. http://www.dupont.com/products-and-services/plastics-polymers-resins/ethylene-copolymers/brands/surlyn-ionomer-resin.html. (Last accessed: 13 Apr 2016)

  168. A. Eisenberg, Clustering of ions in organic polymers. A theoretical approach. Macromolecules 3(2), 147–154 (1970). https://doi.org/10.1021/ma60014a006

    Article  CAS  Google Scholar 

  169. A. Eisenberg, B. Hird, R.B. Moore, A new multiplet-cluster model for the morphology of random ionomers. Macromolecules 23(18), 4098–4107 (1990). https://doi.org/10.1021/ma00220a012

    Article  CAS  Google Scholar 

  170. K. Tadano, E. Hirasawa, H. Yamamoto, S. Yano, Order-disorder transition of ionic clusters in ionomers. Macromolecules 22(1), 226–233 (1989). https://doi.org/10.1021/ma00191a043

    Article  CAS  Google Scholar 

  171. T. Haase, I. Rohr, K. Thoma, Dynamic temperature measurements on a thermally activated self-healing ionomer. J. Intell. Mater. Syst. Struct. 25(1), 25–30 (2014). https://doi.org/10.1177/1045389x12444487

    Article  CAS  Google Scholar 

  172. B. Sandmann, S. Bode, M.D. Hager, U.S. Schubert, Metallopolymers as an emerging class of self-healing materials. Adv. Polym. Sci. 262, 239–257 (2013)

    Article  CAS  Google Scholar 

  173. G.R. Whittell, M.D. Hager, U.S. Schubert, I. Manners, Functional soft materials from metallopolymers and metallosupramolecular polymers. Nat. Mater. 10(3), 176–188 (2011). https://doi.org/10.1038/nmat2966

    Article  CAS  PubMed  Google Scholar 

  174. Z. Wang, M.W. Urban, Facile UV-healable polyethylenimine-copper (C2H5N-cu) supramolecular polymer networks. Polym. Chem. 4(18), 4897–4901 (2013). https://doi.org/10.1039/C2PY20844J

    Article  CAS  Google Scholar 

  175. S. Kupfer, L. Zedler, J. Guthmuller, S. Bode, M.D. Hager, U.S. Schubert, J. Popp, S. Grafe, B. Dietzek, Self-healing mechanism of metallopolymers investigated by QM/MM simulations and Raman spectroscopy. Phys. Chem. Chem. Phys. 16(24), 12422–12432 (2014). https://doi.org/10.1039/C4CP00562G

    Article  CAS  PubMed  Google Scholar 

  176. E. Vaccaro, J.H. Waite, Yield and post-yield behavior of mussel byssal thread: a self-healing biomolecular material. Biomacromolecules 2(3), 906–911 (2001). https://doi.org/10.1021/bm0100514

    Article  CAS  PubMed  Google Scholar 

  177. S. Schmidt, A. Reinecke, F. Wojcik, D. Pussak, L. Hartmann, M.J. Harrington, Metal-mediated molecular self-healing in histidine-rich mussel peptides. Biomacromolecules 15(5), 1644–1652 (2014). https://doi.org/10.1021/bm500017u

    Article  CAS  PubMed  Google Scholar 

  178. H. Ceylan, M. Urel, T.S. Erkal, A.B.. Tekinay, A. Dana, M.O. Guler, Mussel inspired dynamic cross-linking of self-healing peptide nanofiber network. Adv. Funct. Mater. 23(16), 2081–2090 (2013). https://doi.org/10.1002/adfm.201202291

    Article  Google Scholar 

  179. J.J. Wilker, The iron-fortified adhesive system of marine mussels. Angew. Chem. Int. Ed. 49(44), 8076–8078 (2010). https://doi.org/10.1002/anie.201003171

    Article  CAS  Google Scholar 

  180. M.J. Harrington, A. Masic, N. Holten-Andersen, J.H. Waite, P. Fratzl, Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 328(5975), 216–220 (2010). https://doi.org/10.1126/science.1181044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  181. S. Krauss, T.H. Metzger, P. Fratzl, M.J. Harrington, Self-repair of a biological fiber guided by an ordered elastic framework. Biomacromolecules 14(5), 1520–1528 (2013). https://doi.org/10.1021/bm4001712

    Article  CAS  PubMed  Google Scholar 

  182. M. Krogsgaard, M.A. Behrens, J.S. Pedersen, H. Birkedal, Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules 14(2), 297–301 (2013). https://doi.org/10.1021/bm301844u

    Article  CAS  PubMed  Google Scholar 

  183. N. Holten-Andersen, M.J. Harrington, H. Birkedal, B.P. Lee, P.B. Messersmith, K.Y.C. Lee, J.H. Waite, pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl. Acad. Sci. 108(7), 2651–2655 (2011). https://doi.org/10.1073/pnas.1015862108

    Article  PubMed  PubMed Central  Google Scholar 

  184. R. Dong, Y. Liu, Y. Zhou, D. Yan, X. Zhu, Photo-reversible supramolecular hyperbranched polymer based on host-guest interactions. Polym. Chem. 2(12), 2771–2774 (2011). https://doi.org/10.1039/C1PY00426C

    Article  CAS  Google Scholar 

  185. J. Ahner, S. Bode, M. Micheel, B. Dietzek, M.D. Hager, Self-healing functional polymeric materials. Adv. Polym. Sci. (2016). https://doi.org/10.1007/12_2015_333

    Chapter  Google Scholar 

  186. K.A. Williams, A.J. Boydston, C.W. Bielawski, Towards electrically conductive, self-healing materials. J. R. Soc. Interface 4(13), 359–362 (2007). https://doi.org/10.1098/rsif.2006.0202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  187. B.C.K. Tee, C. Wang, R. Allen, Z. Bao, An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 7(12), 825–832 (2012). https://doi.org/10.1038/nnano.2012.192

    Article  CAS  PubMed  Google Scholar 

  188. C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui, Z. Bao, Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5(12), 1042–1048 (2013). https://doi.org/10.1038/nchem.1802

    Article  CAS  PubMed  Google Scholar 

  189. M.M. Caruso, S.R. Schelkopf, A.C. Jackson, A.M. Landry, P.V. Braun, J.S. Moore, Microcapsules containing suspensions of carbon nanotubes. J. Mater. Chem. 19(34), 6093–6096 (2009). https://doi.org/10.1039/B910673A

    Article  CAS  Google Scholar 

  190. S. Kang, A.R. Jones, J.S. Moore, S.R. White, N.R. Sottos, Microencapsulated carbon black suspensions for restoration of electrical conductivity. Adv. Funct. Mater. 24(20), 2947–2956 (2014). https://doi.org/10.1002/adfm.201303427

    Article  CAS  Google Scholar 

  191. E. Palleau, S. Reece, S.C. Desai, M.E. Smith, M.D. Dickey, Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv. Mater. 25(11), 1589–1592 (2013). https://doi.org/10.1002/adma.201203921

    Article  CAS  PubMed  Google Scholar 

  192. J.-H. So, J. Thelen, A. Qusba, G.J. Hayes, G. Lazzi, M.D. Dickey, Reversibly deformable and mechanically tunable fluidic antennas. Adv. Funct. Mater. 19(22), 3632–3637 (2009). https://doi.org/10.1002/adfm.200900604

    Article  CAS  Google Scholar 

  193. A.C. Jackson, J.A. Bartelt, P.V. Braun, Transparent self-healing polymers based on encapsulated plasticizers in a thermoplastic matrix. Adv. Funct. Mater. 21(24), 4705–4711 (2011). https://doi.org/10.1002/adfm.201101574

    Article  CAS  Google Scholar 

  194. M. Saito, T. Nishimura, K. Sakiyama, S. Inagaki, Self-healing of optical functions by molecular metabolism in a swollen elastomer. AIP Adv. 2(4), 042118 (2012). https://doi.org/10.1063/1.4764292

    Article  CAS  Google Scholar 

  195. Y. Zhang, C. Rocco, F. Karasu, L.G.J. van der Ven, R.A.T.M. van Benthem, X. Allonas, C. Croutxé-Barghorn, A.C.C. Esteves, G. de With, UV-cured self-replenishing hydrophobic polymer films. Polymer 69, 384–393 (2015). https://doi.org/10.1016/j.polymer.2015.02.036

    Article  CAS  Google Scholar 

  196. T. Dikić, W. Ming, R.A.T.M. van Benthem, A.C.C. Esteves, G. de With, Self-replenishing surfaces. Adv. Mater. 24(27), 3701–3704 (2012). https://doi.org/10.1002/adma.201200807

    Article  CAS  PubMed  Google Scholar 

  197. A.C.C. Esteves, Y. Luo, M.W.P. van de Put, C.C.M. Carcouët, G. de With, Self-replenishing dual structured superhydrophobic coatings prepared by drop-casting of an all-in-one dispersion. Adv. Funct. Mater. 24(7), 986–992 (2014). https://doi.org/10.1002/adfm.201301909

    Article  CAS  Google Scholar 

  198. S. Bode, M. Enke, M. Hernandez, R.K. Bose, A.M. Grande, S. van der Zwaag, U.S. Schubert, S.J. García, M.D. Hager, Characterization of self-healing polymers: from macroscopic healing tests to the molecular mechanism. Adv. Polym. Sci. (2016). https://doi.org/10.1007/12_2015_341

    Chapter  Google Scholar 

  199. D.C. Tuncaboylu, M. Sahin, A. Argun, W. Oppermann, O. Okay, Dynamics and large strain behavior of self-healing hydrogels with and without surfactants. Macromolecules 45(4), 1991–2000 (2012). https://doi.org/10.1021/ma202672y

    Article  CAS  Google Scholar 

  200. E.B. Murphy, The return of photoelastic stress measurements: utilizing birefringence to monitor damage and repair in healable materials. J. Mater. Chem. 21(5), 1438–1446 (2011). https://doi.org/10.1039/C0JM02308F

    Article  CAS  Google Scholar 

  201. A.M. Grande, S.J. Garcia, S. van der Zwaag, On the interfacial healing of a supramolecular elastomer. Polymer 56, 435–442 (2015). https://doi.org/10.1016/j.polymer.2014.11.052

    Article  CAS  Google Scholar 

  202. E. Tsangouri, D. Aggelis, D. Van Hemelrijck, Quantifying thermoset polymers healing efficiency: a systematic review of mechanical testing. Prog. Polym. Sci. 49–50, 154–174 (2015). https://doi.org/10.1016/j.progpolymsci.2015.06.002

    Article  CAS  Google Scholar 

  203. E.N. Brown, Use of the tapered double-cantilever beam geometry for fracture toughness measurements and its application to the quantification of self-healing. J. Strain Anal. Eng. Des. 46(3), 167–186 (2011). https://doi.org/10.1177/0309324710396018

    Article  Google Scholar 

  204. M.R. Kessler, N.R. Sottos, S.R. White, Self-healing structural composite materials. Compos. Part A: Appl. Sci. Manufact. 34(8), 743–753 (2003). https://doi.org/10.1016/S1359-835X(03)00138-6

    Article  CAS  Google Scholar 

  205. F. Maes, D. Montarnal, S. Cantournet, F. Tournilhac, L. Corte, L. Leibler, Activation and deactivation of self-healing in supramolecular rubbers. Soft Matter 8(5), 1681–1687 (2012). https://doi.org/10.1039/C2SM06715C

    Article  CAS  Google Scholar 

  206. J.M. Vega, A.M. Grande, S. van der Zwaag, S.J. Garcia, On the role of free carboxylic groups and cluster conformation on the surface scratch healing behaviour of ionomers. Eur. Polym. J. 57, 121–126 (2014). https://doi.org/10.1016/j.eurpolymj.2014.05.005

    Article  CAS  Google Scholar 

  207. M. Hernández, A.M. Grande, S. van der Zwaag, S.J. Garcia, Monitoring network and interfacial healing processes by broadband dielectric spectroscopy: a case study on natural rubber. ACS Appl. Mater. Interfaces (2016). https://doi.org/10.1021/acsami.6b02259

    Article  Google Scholar 

  208. B. Grabowski, C.C. Tasan, Self-healing metals. Adv. Polym. Sci. (2016). https://doi.org/10.1007/12_2015_337

    Chapter  Google Scholar 

  209. P. Greil, Generic principles of crack-healing ceramics. J. Adv. Ceram. 1(4), 249–267 (2013). https://doi.org/10.1007/s40145-012-0020-2

    Article  CAS  Google Scholar 

  210. F. Tavangarian, G. Li, Crack healing and strength recovery in SiC/spinel nanocomposite. Ceram. Int. 41(7), 8702–8709 (2015). https://doi.org/10.1016/j.ceramint.2015.03.088

    Article  CAS  Google Scholar 

  211. T. Ouyang, J. Wu, M. Yasir, T. Zhou, X. Fang, Y. Wang, D. Liu, J. Suo, Effect of TiC self-healing coatings on the cyclic oxidation resistance and lifetime of thermal barrier coatings. J. Alloys Compd. 656, 992–1003 (2016). https://doi.org/10.1016/j.jallcom.2015.07.271

    Article  CAS  Google Scholar 

  212. H.J. Yang, Y.T. Pei, J.C. Rao, J.T.M. De Hosson, Self-healing performance of Ti2AlC ceramic. J. Mater. Chem. 22(17), 8304–8313 (2012). https://doi.org/10.1039/C2JM16123K

    Article  CAS  Google Scholar 

  213. S. Li, G. Song, K. Kwakernaak, S. van der Zwaag, W.G. Sloof, Multiple crack healing of a Ti2AlC ceramic. J. Eur. Ceram. Soc. 32(8), 1813–1820 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.01.017

    Article  CAS  Google Scholar 

  214. A.-S. Farle, C. Kwakernaak, S. van der Zwaag, W.G. Sloof, A conceptual study into the potential of Mn+1AXn-phase ceramics for self-healing of crack damage. J. Eur. Ceram. Soc. 35(1), 37–45 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.08.046

    Article  CAS  Google Scholar 

  215. K. Van Tittelboom, N. De Belie, Self-healing in cementitious materials—a review. Materials 6(6), 2182 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  216. M. Wu, B. Johannesson, M. Geiker, A review: self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr. Build. Mater. 28(1), 571–583 (2012). https://doi.org/10.1016/j.conbuildmat.2011.08.086

    Article  Google Scholar 

  217. D. Snoeck, N. De Belie, From straw in bricks to modern use of microfibers in cementitious composites for improved autogenous healing – A review. Constr. Build. Mater. 95, 774–787 (2015). https://doi.org/10.1016/j.conbuildmat.2015.07.018

    Article  Google Scholar 

  218. E. Tziviloglou, K. Van Tittelboom, D. Palin, J. Wang, M.G. Sierra-Beltran, Y.C. Ersan, R. Mors, V. Wiktor, H.M. Jonkers, E. Schlangen, N. De Belie, Bio-based self-healing concrete: from research to field application. Adv. Polym. Sci. (2016). https://doi.org/10.1007/12_2015_332

    Chapter  Google Scholar 

  219. http://ntechresearch.com/market_reports/markets-for-self-healing-materials-2015-2022. (Last accessed: 02 May 2016)

  220. http://www.rsc.org/chemistryworld/2013/09/polymer-regenerates-elastomer-heals-independently. (Last accessed: 02 May 2016)

  221. http://www.autonomicmaterials.com/. (Last accessed: 02 May 2016)

  222. http://www.arkema.com/en/media/news/news-details/Self-healing-elastomer-enters-industrial-production/. (Last accessed: 02 May 2016)

  223. http://www.suprapolix.com/pages/polymers. (Last accessed: 21 Feb 2016)

  224. http://www.sportsmansguide.com/product/index/do-all-ground-bouncer-3-pc-self-healing-impact-target-pack?a=1336175. (Last accessed: 02 May 2016)

  225. http://www.ruehl-ag.de/index.php?id=160. (Last accessed: 02 May 2016)

  226. M.J. Harrington, O. Speck, T. Speck, S. Wagner, R. Weinkamer, Biological archetypes for self-healing materials. Adv. Polym. Sci. (2016). https://doi.org/10.1007/12_2015_334

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank the Deutsche Forschungsgemeinschaft (DFG, SPP 1568) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin D. Hager .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zechel, S., Hager, M.D., Schubert, U.S. (2019). Self-Healing Polymers: From Biological Systems to Highly Functional Polymers. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95987-0_19

Download citation

Publish with us

Policies and ethics