Skip to main content

Braided Pneumatic Actuators as a Variable Stiffness Approximation of Synovial Joints

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10928))

Abstract

This paper presents the design of a novel adjustably damped hip and ankle joint using braided pneumatic actuators. These joints provide a wide range of motion and exhibit the same change in stiffness as flexion increases that human joints exhibit, which should also increase bipedal stability, adaptability, and controllability. The theoretical behaviors of the joint make them desirable for use in mobile robotics and should provide a lightweight yet mechanically strong connection that is resistant to unexpected perturbations and catastrophic failure. The joints also bridge the gap between completely soft robotics and completely rigid robotics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pratt, G.A., Williamson, M.M., Dillworth, P., Pratt, J., Wright, A.: Stiffness isn’t everything. In: Khatib, O., Salisbury, J.K. (eds.) Experimental Robotics IV, pp. 253–262. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0035216

    Chapter  Google Scholar 

  2. Collins, S.H., Ruina, A.: A bipedal walking robot with efficient and human-like gait. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 1983–1988 (2005)

    Google Scholar 

  3. Pratt, G.A.: Low impedance walking robots. Integr. Comp. Biol. 42, 174–181 (2002)

    Article  Google Scholar 

  4. Kim, B.-H.: Work analysis of compliant leg mechanisms for bipedal walking robots. Int. J. Adv. Robot. Syst. 10(9), 334 (2013)

    Article  Google Scholar 

  5. Iida, F., Minekawa, Y., Rummel, J., Seyfarth, A.: Toward a human-like biped robot with compliant legs. Robot. Auton. Syst. 57, 139–144 (2009)

    Article  Google Scholar 

  6. Zhou, X., Bi, S.: A survey of bio-inspired compliant legged robot designs. Bioinspir. Biomim. 7, 041001 (2012)

    Article  Google Scholar 

  7. Standring, S.: Gray’s Anatomy. Elsevier (2015)

    Google Scholar 

  8. Levangie, P.K., Norkin, C.C.: Joint Structure and Function: A Comprehensive Analysis, 5th edn. F. A. Davis Company, Philadelphia (2011)

    Google Scholar 

  9. Hewitt, J., Guilak, F., Glisson, R., Vail, T.P.: Regional material properties of the human hip joint capsule ligaments. J. Orthop. Res. 19, 359–364 (2001)

    Article  Google Scholar 

  10. van Arkel, R.J., Amis, A.A., Cobb, J.P., Jeffers, J.R.T.: The capsular ligaments provide more hip rotational restraint than the acetabular labrum and the ligamentum teres: an experimental study. Bone Jt. J. 97-B, 484–491 (2015)

    Article  Google Scholar 

  11. Mansour, J.M.: Biomechanics of cartilage. In: Biomechanical Principles (2013)

    Google Scholar 

  12. Halonen, K.S., Mononen, M.E., Jurvelin, J.S., Töyräs, J., Kłodowski, A., Kulmala, J.-P., Korhonen, R.K.: Importance of patella, quadriceps forces, and depthwise cartilage structure on knee joint motion and cartilage response during gait. J. Biomech. Eng. 138, 071002-1–071002-11 (2016)

    Article  Google Scholar 

  13. Pelvis and Hip - CT Scan. https://www.embodi3d.com/files/file/11745-pelvis-and-hip-ct-scan/

  14. Kazemi, S.M., Qoreishy, M., Keipourfard, A., Sajjadi, M.M., Shokraneh, S.: Effects of hip geometry on fracture patterns of proximal femur. Arch. Bone Jt. Surg. 4, 248–252 (2016)

    Google Scholar 

  15. Wu, H.-H., Wang, D., Ma, A.-B., Gu, D.-Y.: Hip joint geometry effects on cartilage contact stresses during a gait cycle. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6038–6041 (2016)

    Google Scholar 

  16. Hartel, M.J., Petersik, A., Schmidt, A., Kendoff, D., Nüchtern, J., Rueger, J.M., Lehmann, W., Grossterlinden, L.G.: Determination of femoral neck angle and torsion angle utilizing a novel three-dimensional modeling and analytical technology based on CT datasets. PLoS ONE 11, e0149480 (2016)

    Article  Google Scholar 

  17. Colbrunn, R.W., Nelson, G.M., Quinn, R.D.: Modeling of braided pneumatic actuators for robotic control. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No. 01CH37180), vol. 4, pp. 1964–1970 (2001)

    Google Scholar 

  18. Chou, C.-P., Hannaford, B.: Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. 12, 90–102 (1996)

    Article  Google Scholar 

  19. Soucie, J.M., Wang, C., Forsyth, A., Funk, S., Denny, M., Roach, K.E., Boone, D.: Range of motion measurements: reference values and a database for comparison studies. Haemophilia 17(3), 500–507 (2011)

    Article  Google Scholar 

  20. Roaas, A., Andersson, G.B.J.: Normal range of motion of the hip, knee and ankle joints in male subjects, 30–40 years of age. Acta Orthop. Scand. 53, 205–208 (1982)

    Article  Google Scholar 

  21. Kouyoumdjian, P., Coulomb, R., Sanchez, T., Asencio, G.: Clinical evaluation of hip joint rotation range of motion in adults. Orthop. Traumatol. Surg. Res. 98, 17–23 (2012)

    Article  Google Scholar 

  22. Reynolds, D.B., Repperger, D.W., Phillips, C.A., Bandry, G.: Modeling the dynamic characteristics of pneumatic muscle. Ann. Biomed. Eng. 31, 310–317 (2003)

    Article  Google Scholar 

  23. Amiri, P., Kearney, R.E.: Ankle intrinsic stiffness is modulated by postural sway, July 2017

    Google Scholar 

  24. Misgeld, B.J.E., Zhang, T., Lüken, M.J., Leonhardt, S.: Model-based estimation of ankle joint stiffness (2017)

    Google Scholar 

  25. Guarin, D.L., Kearney, R.E.: Time-varying identification of ankle dynamic joint stiffness during movement with constant muscle activation, August 2015

    Google Scholar 

  26. Hettich, G., Assländer, L., Gollhofer, A., Mergner, T.: Human hip–ankle coordination emerging from multisensory feedback control. Hum. Mov. Sci. 37, 123–146 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Mechanical and Materials Engineering Department in the Maseeh College of Engineering at Portland State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander G. Steele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Steele, A.G., Hunt, A.J. (2018). Braided Pneumatic Actuators as a Variable Stiffness Approximation of Synovial Joints. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95972-6_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95971-9

  • Online ISBN: 978-3-319-95972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics