Skip to main content

Object Localisation with a Highly Compliant Tactile Sensory Probe via Distributed Strain Sensors

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10928))

Abstract

Insect antennae have been repeatedly proposed as paragons of active tactile sensors for biomimetic robots. A challenging aspect of using insect-like feelers for tactile localisation concerns the compliance of the long and slender structure of insect antennae. Other than in a rigid sensory probe, where the contact location in space may be estimated from the pointing direction and contact distance along the probe (polar coordinates), the strong compliance of insect antennae during contact events raises the question how insects can localise contact positions in space. Here we study the stick insect antenna to address this question. Our main objective was to test whether and how the bending properties of the insect antenna may allow reliable estimation of spatial contact locations through an array of bending sensors. During walking and climbing, the stick insect Carausius morosus executes cyclic antennal movements to explore the ambient space ahead. When the antenna touches an obstacle, it often bends strongly. Nevertheless, the insect can reliably reach for the contacted obstacle. Here, we systematically deflected insect antennae with an industrial robot to mimic an array of static contact locations. Then, we measured the resulting curvature of the flagellum, assuming that campanifom sensilla distributed along the flagellum could encode the corresponding bending profile. We found that we could train an artificial neural network to estimate the contact positions in 3D space with an accuracy of 0.5 mm or less from a given set of curvature data. This suggests that the bending characteristics of a tactile sensory probe could be tuned to aid spatial localisation by contact-site-dependent, compliant deformation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Prescott, T.J., Diamond, M.E., Wing, A.M.: Active touch sensing. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 366, 2989–2995 (2011)

    Article  Google Scholar 

  2. Dürr, V., Theunissen, L.M., Dallmann, C.J., Hoinville, T., Schmitz, J.: Motor flexibility in insects: adaptive coordination of limbs in locomotion and near-range exploration. Behav. Ecol. Sociobiol. 72, 379 (2018)

    Article  Google Scholar 

  3. Kaneko, M., Kanayama, N., Tsuji, T.: Active antenna for contact sensing. IEEE Trans. Robot. Autom. 14, 278–291 (1998)

    Article  Google Scholar 

  4. Ueno, N., Svinin, M.M., Kaneko, M.: Dynamic contact sensing by flexible beam. IEEE/ASME Trans. Mechatron. 3, 254–264 (1998)

    Article  Google Scholar 

  5. Patanè, L., Hellbach, S., Krause, A.F., Arena, P., Dürr, V.: An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation. Front. Neurorobotics 6, 1–18 (2012)

    Article  Google Scholar 

  6. Hoinville, T., Harischandra, N., Krause, A.F., Dürr, V.: Insect-inspired tactile contour sampling using vibration-based robotic antennae. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS (LNAI), vol. 8608, pp. 118–129. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09435-9_11

    Chapter  Google Scholar 

  7. Sandeman, D.C.: Physical properties, sensory receptors and tactile reflexes of the antenna of the australian freshwater crayfish Cherax destructor. J. Exp. Biol. 141, 197–217 (1989)

    Google Scholar 

  8. Dirks, J.-H., Dürr, V.: Biomechanics of the stick insect antenna. Damping properties and structural correlates of the cuticle. J. Mech. Behav. Biomed. Mater. 4, 2031–2042 (2011)

    Article  Google Scholar 

  9. Mongeau, J.-M., Demir, A., Dallmann, C.J., Jayaram, K., Cowan, N.J., Full, R.J.: Mechanical processing via passive dynamic properties of the cockroach antenna can facilitate control during rapid running. J. Exp. Biol. 217, 3333–3345 (2014)

    Article  Google Scholar 

  10. Demir, A., Samson, E.W., Cowan, N.J.: A tunable physical model of arthropod antennae. In: 2010 IEEE International Conference on Robotics and Automation, pp. 3793–3798. IEEE (2010)

    Google Scholar 

  11. Staudacher, E.M., Gebhardt, M., Dürr, V.: Antennal movements and mechanoreception. Neurobiology of active tactile sensors. In: Advances in Insect Physiology, vol. 32, pp. 49–205. Elsevier (2005)

    Google Scholar 

  12. Schütz, C., Dürr, V.: Active tactile exploration for adaptive locomotion in the stick insect. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2996–3005 (2011)

    Article  Google Scholar 

  13. Heinzel, H.-G., Gewecke, M.: Directional sensitivity of the antennal campaniform sensilla in locusts. Naturwissenschaften 66, 212–213 (1979)

    Article  Google Scholar 

  14. Bässler, U.: Neural Basis Of Elementary Behavior in Stick Insects. Springer, Berlin (1983)

    Book  Google Scholar 

  15. Chapman, K.M., Duckrow, R.B., Moran, D.T.: Form and role of deformation in excitation of an insect mechanoreceptor. Nature 244, 453–454 (1973)

    Article  Google Scholar 

  16. Gollin, A., Dürr, V.: Estimating body pitch from distributed proprioception in a hexapod. In: Vasiliki, V., et al. (eds.) Living Machines 2018. LNAI, vol. 10928, pp. 187–199. Springer, AG (2018).

    Google Scholar 

  17. Lee, J., Sponberg, S.N., Loh, O.Y., Lamperski, A.G., Full, R.J., Cowan, N.J.: Templates and anchors for antenna-based wall following in cockroaches and robots. IEEE Trans. Robot. 24, 130–143 (2008)

    Article  Google Scholar 

  18. Slifer, E.H.: Sense organs on the antennal flagellum of a walkingstick Carausius morosus Brünner (Phasmida). J. Morphol. 120, 189–201 (1966)

    Article  Google Scholar 

  19. Monteforti, G., Angeli, S., Petacchi, R., Minnocci, A.: Ultrastructural characterization of antennal sensilla and immunocytochemical localization of a chemosensory protein in Carausius morosus Brünner (Phasmida. Phasmatidae). Arthropod Struct. Dev. 30, 195–205 (2002)

    Article  Google Scholar 

  20. Comer, C., Baba, Y.: Active touch in orthopteroid insects: behaviours, multisensory substrates and evolution. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 366, 3006–3015 (2011)

    Article  Google Scholar 

  21. Okada, J., Akamine, S.: Behavioral response to antennal tactile stimulation in the field cricket Gryllus bimaculatus. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 198, 557–565 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Dürr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schultz, M., Dürr, V. (2018). Object Localisation with a Highly Compliant Tactile Sensory Probe via Distributed Strain Sensors. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95972-6_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95971-9

  • Online ISBN: 978-3-319-95972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics