Skip to main content

RP-FIRF: Prediction of Self-interacting Proteins Using Random Projection Classifier Combining with Finite Impulse Response Filter

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10955))

Abstract

The self-interacting proteins (SIPs) plays a significant part in the organism and the regulation of cellular functions. Thence, we developed an effective algorithm to predict SIPs, named RP-FIRF, which merges the Random Projection (RP) classifier and Finite Impulse Response Filter (FIRF) together. More specifically, the Position Specific Scoring Matrix (PSSM) was firstly converted from protein sequence by exploiting Position Specific Iterated BLAST (PSI-BLAST). Then, we obtained the same size of matrix by implementing a valid matrix multiplication on PSSM, and applied FIRF approach to calculate the eigenvalues of each protein. The Principal Component Analysis (PCA) approach is used to extract the most relevant information. Finally, the performance of the proposed method is performed on human dataset. The results show that our model can achieve high average accuracies of 97.89% on human dataset using the 5-fold cross-validation, which demonstrate that our method is a useful tool for identifying SIPs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. De Las Rivas, J., Fontanillo, C.: Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput. Biol. 6(6) (2010)

    Google Scholar 

  2. Zhu, L., You, Z.H., Huang, D.S., Wang, B.: t-LSE: A novel robust geometric approach for modeling protein-protein interaction networks. PLoS ONE 8(4) (2013)

    Article  Google Scholar 

  3. Lei, Y.K., You, Z.H., Ji, Z., Zhu, L., Huang, D.S.: Assessing and predicting protein interactions by combining manifold embedding with multiple information integration. BMC Bioinform. 13(7), S3 (2012)

    Article  Google Scholar 

  4. Li, Z.W., You, Z.H., Chen, X., Li, L.P., Huang, D.S., Yan, G.Y., Nie, R., Huang, Y.A.: Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier. Oncotarget 8(14), 23638 (2017)

    Google Scholar 

  5. Liu, Z., Guo, F., Zhang, J., Wang, J., Lu, L., Li, D., He, F.: Proteome-wide prediction of self-interacting proteins based on multiple properties. Mol. Cell. Proteomics 12(6), 1689–1700 (2013)

    Article  Google Scholar 

  6. Marianayagam, N.J., Sunde, M., Matthews, J.M.: The power of two: protein dimerization in biology. Trends Biochem. Sci. 29(11), 618–625 (2004)

    Article  Google Scholar 

  7. Ispolatov, I., Yuryev, A., Mazo, I., Maslov, S.: Binding properties and evolution of homodimers in protein–protein interaction networks. Nucleic Acids Res. 33(11), 3629–3635 (2005)

    Article  Google Scholar 

  8. Wang, Y.-B., You, Z.-H., Li, L.-P., Huang, Y.-A., Yi, H.-C.: Detection of interactions between proteins by using legendre moments descriptor to extract discriminatory information embedded in PSSM. Molecules 22(8), 1366 (2017)

    Article  Google Scholar 

  9. Woodcock, J.M., Murphy, J., Stomski, F.C., Berndt, M.C., Lopez, A.F.: The dimeric versus monomeric status of 14-3-3ζ is controlled by phosphorylation of Ser58 at the dimer interface. J. Biol. Chem. 278(38), 36323–36327 (2003)

    Article  Google Scholar 

  10. Baisamy, L., Jurisch, N., Diviani, D.: Leucine zipper-mediated homo-oligomerization regulates the Rho-GEF activity of AKAP-Lbc. J. Biol. Chem. 280(15), 15405–15412 (2005)

    Article  Google Scholar 

  11. Katsamba, P., Carroll, K., Ahlsen, G., Bahna, F., Vendome, J., Posy, S., Rajebhosale, M., Price, S., Jessell, T., Ben-Shaul, A.: Linking molecular affinity and cellular specificity in cadherin-mediated adhesion. Proc. Nat. Acad. Sci. 106(28), 11594–11599 (2009)

    Article  Google Scholar 

  12. Koike, R., Kidera, A., Ota, M.: Alteration of oligomeric state and domain architecture is essential for functional transformation between transferase and hydrolase with the same scaffold. Protein Sci. 18(10), 2060–2066 (2009)

    Article  Google Scholar 

  13. You, Z.H., Huang, Z.A., Zhu, Z., Yan, G.Y., Li, Z.W., Wen, Z., Chen, X.: PBMDA: a novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput. Biol. 13(3) (2017)

    Google Scholar 

  14. You, Z.H., Zhou, M.C., Xin, L., Shuai, L.: Highly efficient framework for predicting interactions between proteins. IEEE Trans. Cybern. 47(3), 731–743 (2017)

    Article  Google Scholar 

  15. You, Z.H., Lei, Y.K., Gui, J., Huang, D.S., Zhou, X.: Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics 26(21), 2744–2751 (2010)

    Article  Google Scholar 

  16. You, Z.H., Yin, Z., Han, K., Huang, D.S., Zhou, X.: A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network. BMC Bioinform. 11(1), 343 (2010)

    Article  Google Scholar 

  17. An, J.Y., You, Z.H., Chen, X., Huang, D.S., Yan, G., Wang, D.F.: Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information. Mol. BioSyst. 12(12), 3702–3710 (2016)

    Article  Google Scholar 

  18. An, J.Y., You, Z.H., Chen, X., Huang, D.S., Li, Z.W., Liu, G., Wang, Y.: Identification of self-interacting proteins by exploring evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix. Oncotarget 7(50), 82440–82449 (2016)

    Article  Google Scholar 

  19. Huang, Y.A., Chen, X., You, Z.H., Huang, D.S., Chan, K.C.C.: ILNCSIM: improved lncRNA functional similarity calculation model. Oncotarget 7(18), 25902–25914 (2016)

    Google Scholar 

  20. Zhu, L., You, Z.H., Huang, D.S.: Increasing the reliability of protein–protein interaction networks via non-convex semantic embedding. Neurocomputing 121, 99–107 (2013)

    Article  Google Scholar 

  21. Xia, J.F., You, Z.H., Wu, M., Wang, S.L., Zhao, X.M.: Improved method for predicting phi-turns in proteins using a two-stage classifier. Protein Pept. Lett. 17(9), 1117–1122 (2010)

    Article  Google Scholar 

  22. You, Z.H., Yu, J.Z., Zhu, L., Li, S., Wen, Z.K.: A MapReduce based parallel SVM for large-scale predicting protein–protein interactions. Neurocomputing 145, 37–43 (2014)

    Article  Google Scholar 

  23. Li, S., You, Z.H., Guo, H., Luo, X., Zhao, Z.Q.: Inverse-free extreme learning machine with optimal information updating. IEEE Trans. Cybern. 46(5), 1229–1241 (2016)

    Article  Google Scholar 

  24. Lei, W., You, Z.H., Xia, S.X., Feng, L., Xing, C., Xin, Y., Yong, Z.: Advancing the prediction accuracy of protein-protein interactions by utilizing evolutionary information from position-specific scoring matrix and ensemble classifier. J. Theor. Biol. 418, 105–110 (2017)

    Article  MathSciNet  Google Scholar 

  25. You, Z.H., Li, S., Gao, X., Luo, X., Ji, Z.: Large-scale protein-protein interactions detection by integrating big biosensing data with computational model. Biomed. Res. Int. 2014, 598129 (2014)

    Article  Google Scholar 

  26. Gao, Z.-G., Wang, L., Xia, S.-X., You, Z.-H., Yan, X., Zhou, Y.: Ens-PPI: a novel ensemble classifier for predicting the interactions of proteins using autocovariance transformation from pssm. Biomed. Res. Int. 2016, 8 (2016)

    Google Scholar 

  27. Wang, Y.-B., You, Z.-H., Li, X., Jiang, T.-H., Chen, X., Zhou, X., Wang, L.: Predicting protein–protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Mol. BioSyst. 13(7), 1336–1344 (2017)

    Article  Google Scholar 

  28. Du, X., Cheng, J., Zheng, T., Duan, Z., Qian, F.: A novel feature extraction scheme with ensemble coding for protein–protein interaction prediction. Int. J. Mol. Sci. 15(7), 12731–12749 (2014)

    Article  Google Scholar 

  29. Zahiri, J., Yaghoubi, O., Mohammad-Noori, M., Ebrahimpour, R., Masoudi-Nejad, A.: PPIevo: Protein–protein interaction prediction from PSSM based evolutionary information. Genomics 102(4), 237–242 (2013)

    Article  Google Scholar 

  30. Zahiri, J., Mohammad-Noori, M., Ebrahimpour, R., Saadat, S., Bozorgmehr, J.H., Goldberg, T., Masoudi-Nejad, A.: LocFuse: human protein–protein interaction prediction via classifier fusion using protein localization information. Genomics 104(6), 496–503 (2014)

    Article  Google Scholar 

  31. Liu, X., Yang, S., Li, C., Zhang, Z., Song, J.: SPAR: a random forest-based predictor for self-interacting proteins with fine-grained domain information. Amino Acids 48(7), 1655–1665 (2016)

    Article  Google Scholar 

  32. Consortium, U.: UniProt: a hub for protein information. Nucleic Acids Res. 43(D1), D204–D212 (2014)

    Article  Google Scholar 

  33. Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004)

    Article  Google Scholar 

  34. Chatr-Aryamontri, A., Breitkreutz, B.-J., Oughtred, R., Boucher, L., Heinicke, S., Chen, D., Stark, C., Breitkreutz, A., Kolas, N., O’donnell, L.: The BioGRID interaction database: 2015 update. Nucleic Acids Res. 43(D1), D470–D478 (2014)

    Article  Google Scholar 

  35. Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-Carter, F., Campbell, N.H., Chavali, G., Chen, C., Del-Toro, N.: The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42(D1), D358–D363 (2013)

    Article  Google Scholar 

  36. Breuer, K., Foroushani, A.K., Laird, M.R., Chen, C., Sribnaia, A., Lo, R., Winsor, G.L., Hancock, R.E., Brinkman, F.S., Lynn, D.J.: InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Res. 41(D1), D1228–D1233 (2012)

    Article  Google Scholar 

  37. Launay, G., Salza, R., Multedo, D., Thierry-Mieg, N., Ricard-Blum, S.: MatrixDB, the extracellular matrix interaction database: updated content, a new navigator and expanded functionalities. Nucleic Acids Res. 43(D1), D321–D327 (2014)

    Article  Google Scholar 

  38. Gribskov, M., McLachlan, A.D., Eisenberg, D.: Profile analysis: detection of distantly related proteins. Proc. Nat. Acad. Sci. 84(13), 4355–4358 (1987)

    Article  Google Scholar 

  39. Wang, Y., You, Z., Li, X., Chen, X., Jiang, T., Zhang, J.: PCVMZM: using the probabilistic classification vector machines model combined with a zernike moments descriptor to predict protein-protein interactions from protein sequences. Int. J. Mol. Sci. 18(5), 1029 (2017)

    Article  Google Scholar 

  40. You, Z.H., Li, J., Gao, X., He, Z., Zhu, L., Lei, Y.K., Ji, Z.: Detecting protein-protein interactions with a novel matrix-based protein sequence representation and support vector machines. BioMed Res. Int. 2015, 1–9 (2015)

    Article  Google Scholar 

  41. You, Z.H., Chan, K.C.C., Hu, P.: Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest. PLoS ONE 10(5) (2015)

    Article  Google Scholar 

  42. Lei, Y.-K., You, Z.-H., Dong, T., Jiang, Y.-X., Yang, J.-A.: Increasing reliability of protein interactome by fast manifold embedding. Pattern Recogn. Lett. 34(4), 372–379 (2013)

    Article  Google Scholar 

  43. Altschul, S.F., Koonin, E.V.: Iterated profile searches with PSI-BLAST—a tool for discovery in protein databases. Trends Biochem. Sci. 23(11), 444–447 (1998)

    Article  Google Scholar 

  44. You, Z.-H., Li, X., Chan, K.C.: An improved sequence-based prediction protocol for protein-protein interactions using amino acids substitution matrix and rotation forest ensemble classifiers. Neurocomputing 228, 277–282 (2017)

    Article  Google Scholar 

  45. Wang, L., You, Z.-H., Chen, X., Li, J.-Q., Yan, X., Zhang, W., Huang, Y.-A.: An ensemble approach for large-scale identification of protein-protein interactions using the alignments of multiple sequences. Oncotarget 8(3), 5149 (2017)

    Google Scholar 

  46. Li, J.-Q., You, Z.-H., Li, X., Ming, Z., Chen, X.: PSPEL. In silico prediction of self-interacting proteins from amino acids sequences using ensemble learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(5), 1165–1172 (2017)

    Article  Google Scholar 

  47. Zhu, H.-J., You, Z.-H., Zhu, Z.-X., Shi, W.-L., Chen, X., Cheng, L.: DroidDet: effective and robust detection of android malware using static analysis along with rotation forest model. Neurocomputing 272, 638–646 (2018)

    Article  Google Scholar 

  48. Chen, X., Huang, Y.-A., You, Z.-H., Yan, G.-Y., Wang, X.-S.: A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics 33(5), 733–739 (2016)

    Google Scholar 

  49. Huang, Y.-A., You, Z.-H., Chen, X., Yan, G.-Y.: Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition. BMC Syst. Biol. 10(4), 120 (2016)

    Article  Google Scholar 

  50. Huang, Y.-A., You, Z.-H., Li, X., Chen, X., Hu, P., Li, S., Luo, X.: Construction of reliable protein–protein interaction networks using weighted sparse representation based classifier with pseudo substitution matrix representation features. Neurocomputing 218, 131–138 (2016)

    Article  Google Scholar 

  51. Chen, X., Huang, Y.-A., Wang, X.-S., You, Z.-H., Chan, K.C.: FMLNCSIM: fuzzy measure-based lncRNA functional similarity calculation model. Oncotarget 7(29), 45948 (2016)

    Google Scholar 

  52. Chen, X., Yan, C.C., Zhang, X., You, Z.-H.: Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief. Bioinform. 18(4), 558–576 (2016)

    Google Scholar 

  53. Huang, Y.-A., You, Z.-H., Chen, X., Chan, K., Luo, X.: Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding. BMC Bioinform. 17(1), 184 (2016)

    Article  Google Scholar 

  54. Huang, Y.-A., You, Z.-H., Gao, X., Wong, L., Wang, L.: Using weighted sparse representation model combined with discrete cosine transformation to predict protein-protein interactions from protein sequence. BioMed Res. Int. 2015, 10 (2015)

    Google Scholar 

  55. Wang, L., You, Z.-H., Xia, S.-X., Chen, X., Yan, X., Zhou, Y., Liu, F.: An improved efficient rotation forest algorithm to predict the interactions among proteins. Soft Comput. 22, 1–9 (2017)

    Google Scholar 

  56. Schclar, A., Rokach, L.: Random projection ensemble classifiers. In: Filipe, J., Cordeiro, J. (eds.) Enterprise Information Systems. Lecture Notes in Business Information Processing, vol. 24, pp. 309–316. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01347-8_26

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Hong You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, ZH., You, ZH., Li, LP., Wang, YB., Li, X. (2018). RP-FIRF: Prediction of Self-interacting Proteins Using Random Projection Classifier Combining with Finite Impulse Response Filter. In: Huang, DS., Jo, KH., Zhang, XL. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10955. Springer, Cham. https://doi.org/10.1007/978-3-319-95933-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95933-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95932-0

  • Online ISBN: 978-3-319-95933-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics