Skip to main content

Coupled Eulerian-Lagrangian Modeling to Study the Long-Runout Landslide: A Case Study

  • Conference paper
  • First Online:
Tunneling in Soft Ground, Ground Conditioning and Modification Techniques (GeoChina 2018)

Part of the book series: Sustainable Civil Infrastructures ((SUCI))

  • 703 Accesses

Abstract

The coupled Eulerian-Lagrangian (CEL) method is a latest technology for simulating the large deformation and discrete geotechnical problem. In this paper, we use this new method to simulate the long-runout landslide which occurred at the Hong’ao landfill on December 20th, 2015, in Shenzhen, China. This landslide killed 77 people and destroyed 33 houses, regarded as one of the largest landfill landslide in the world. The field survey and previous research results after the accident are applied to validate the numerical model of the landslide. The long-runout behavior of the landslide is studied in terms of runout area, velocity, kinematic energy. The runout area of the simulation landslide is close to that of the actual. The maximum simulated velocity of the landslide is up to 35.41 m/s at 68 s which is close to the result simulated by the LS-RAPID. The maximum kinetic energy of the landslide is 2230.4 GJ at 68 s, and the frontier buildings might be impacted at 78.3 s, when the total energy of the landslide can be 2097.4 GJ, roughly equivalent to the explosive energy of 5 t TNT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbero, M., Barpi, F.: Geomechanical modeling to study the effects of slope instability on buildings: a case study in northern Italy. Icarus 126(2), 373–394 (2012)

    Google Scholar 

  • Blasio, F.: Production of frictional heat and hot vapour in a model of self-lubricating landslides. Rock Mech. Rock Eng. 41(1), 219–226 (2008)

    Article  Google Scholar 

  • Bui, H.H., Fukagawa, R., Sako, K., et al.: Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH). Géotechnique 61(7), 565–574 (2011)

    Article  Google Scholar 

  • Chi, L., De, Y., Zhong, W., et al.: Model test on rainfall-induced loess–mudstone interfacial landslides in Qingshuihe, China. Environ. Earth Sci. 75(9), 1–18 (2016)

    Google Scholar 

  • Dai, Z., Huang, Y., Cheng, H., et al.: 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake. Eng. Geol. 180, 21–33 (2014)

    Article  Google Scholar 

  • Davies, O., Rouainia, M., Glendinning, S., et al.: Investigation of a pore pressure driven slope failure using a coupled hydro-mechanical model. Eng. Geol. 178(8), 70–81 (2014)

    Article  Google Scholar 

  • Degirolamo, P., Cecioni, C., Montagna, F., et al.: Numerical modeling of landslide generated tsunamis around a conical Island. Nat. Hazards 58(1), 591–608 (2011)

    Article  Google Scholar 

  • Fioravante, V.: Physical modeling of landslide stabilization methods in an overconsolidated clay. Geotech. Test. J. 31(2), 175–191 (2007)

    Google Scholar 

  • Horrillo, J., Wood, A., Kim, G.B., et al.: A simplified 3-D Navier-Stokes numerical model for landslide-tsunami: application to the Gulf of Mexico. J. Geophys. Res. Oceans 118(12), 6934–6950 (2013)

    Article  Google Scholar 

  • Huang, Y., Zhang, W., Xu, Q., et.al.: Runout analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides 9(2), 275–283 (2012)

    Article  Google Scholar 

  • Kent, P.E.: The transport mechanism in catastrophic rock falls. J. Geol. 74(1), 79–83 (1966)

    Article  Google Scholar 

  • Kong, J., Cai, Q., Zhang, Y., et al.: Physical model test of debris landslide reinforcement with single row micro-pile. J. Mt. Sci. 31(4), 399–405 (2013)

    Google Scholar 

  • Lee, C.T., Huang, C.C., Lee, J.F., et al.: Statistical approach to earthquake-induced landslide susceptibility. Eng. Geol. 100(1), 43–58 (2008)

    Article  Google Scholar 

  • Li, X., Wu, Y., He, S., et al.: Application of the material point method to simulate the post-failure runout processes of the Wangjiayan landslide. Eng. Geol. 212, 1–9 (2016)

    Article  Google Scholar 

  • Lo, C.M., Lin, M.L., Tang, C.L., et al.: A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit. Eng. Geol. 123(1), 22–39 (2011)

    Article  Google Scholar 

  • Montagna, F., Bellotti, G., Risio, M.D.: 3D numerical modeling of landslide-generated tsunamis around a conical island. Nat. Hazards 58(1), 591–608 (2011)

    Article  Google Scholar 

  • Nandi, A., Shakoor, A.: A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng. Geol. 110(1), 11–20 (2010)

    Article  Google Scholar 

  • Pastor, M., Blanc, T., Haddad, B., et al.: Application of a SPH depth-integrated model to landslide runout analysis. Landslides 11(5), 793–812 (2014)

    Article  Google Scholar 

  • Pucker, T., Grabe, J.: Numerical simulation of the installation process of full displacement piles. Comput. Geotech. 45(9), 93–106 (2012)

    Article  Google Scholar 

  • Qiu, G., Henke, S.: Controlled installation of spudcan foundations on loose sand overlying weak clay. Mar. Struct. 24(4), 528–550 (2011)

    Article  Google Scholar 

  • Qiu, G., Henke, S., Grabe, J.: Application of a Coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations. Comput. Geotech. 38(1), 30–39 (2011)

    Article  Google Scholar 

  • Quinnp, E., Diederichsm, S., Rower, K., et al.: A new model for large landslides in sensitive clay using a fracture me. Can. Geotech. J. 48(8), 1151–1162 (2011)

    Article  Google Scholar 

  • Ramakrishnan, D., Singh, T.N., Verma, A.K., et al.: Soft computing and GIS for landslide susceptibility assessment in Tawaghat area, Kumaon Himalaya, India. Natural Hazards 65(1), 315–330 (2013)

    Article  Google Scholar 

  • Saha, A.K., Gupta, R.P., Sarkar, I., et al.: An approach for GIS-based statistical landslide susceptibility zonation—with a case study in the Himalayas. Landslides 2(1), 61–69 (2005)

    Article  Google Scholar 

  • Shahabi, H., Hashim, M.: Landslide susceptibility mapping using GIS-based statistical models and remote sensing data in tropical environment. Sci. Rep. 5(3), 9899 (2015)

    Article  Google Scholar 

  • Sun, Y., Yang, J., Song, E.: Runout analysis of landslides using material point method. In: Iop Conference Series: Earth and Environmental Science (2015)

    Article  Google Scholar 

  • Tang, C.L., Hu, J.C., Lin, M.L., et al.: The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation. Eng. Geol. 106(1–2), 1–19 (2009)

    Article  Google Scholar 

  • Tho, K.K., Leung, C.F., Chow, Y.K., et al.: Eulerian Finite-Element technique for analysis of jack-up spudcan penetration. Int. J. Geomech. 12(1), 64–73 (2012)

    Article  Google Scholar 

  • Turner, D., Lucieer, A., De Jong, S.: Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sens. 7(2), 1736–1757 (2015)

    Article  Google Scholar 

  • Wu, J.H., Chen, C.H.: Application of DDA to simulate characteristics of the Tsaoling landslide. Comput. Geotech. 38(5), 741–750 (2011)

    Article  Google Scholar 

  • Yin, Y., Li, B., Wang, W., et al.: Mechanism of the December 2015 catastrophic landslide at the shenzhen landfill and controlling geotechnical risks of urbanization. Engineering 2(2), 230–249 (2016)

    Article  Google Scholar 

  • Yin, Y., Xing, A., Wang, G., et al.: Experimental and numerical investigations of a catastrophic long-runout landslide in Zhenxiong, Yunnan, southwestern China. Landslides 14(2), 1–11 (2017)

    Article  Google Scholar 

  • Yuan, R.M., Tang, C.L., Hu, J.C., et al.: Mechanism of the Donghekou landslide triggered by the 2008 Wenchuan earthquake revealed by discrete element modeling. Nat. Hazards Earth Syst. Sci. 14(5), 1195–1205 (2014)

    Article  Google Scholar 

  • Zhang, Y., Wang, J., Xu, Q., et al.: DDA validation of the mobility of earthquake-induced landslides. Eng. Geol. 194, 38–51 (2014)

    Article  Google Scholar 

  • Zhang, Z., Wang, T., Wu, S., et al.: Investigation of dormant landslides in earthquake conditions using a physical model. Landslides 1, 1–13 (2017)

    Google Scholar 

  • Zhou, J., Cui, P., Yang, X.: Dynamic process analysis for the initiation and movement of the Donghekou landslide-debris flow triggered by the Wenchuan earthquake. J. Asian Earth Sci. 76, 70–84 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by national natural science foundation of China (No. 11705083), the state key laboratory of safety and health for metal mines (No. 2016-JSKSSYS-08), the PHD initial foundation program of the University of South China (No. 2014XQD11), and the natural science foundation of Hunan Province (No. 2017JJ4009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-yang Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, Sy., Li, Hq., Li, Xy., Liu, Y., Chen, Z. (2019). Coupled Eulerian-Lagrangian Modeling to Study the Long-Runout Landslide: A Case Study. In: Cheng, WC., Yang, J., Wang, J. (eds) Tunneling in Soft Ground, Ground Conditioning and Modification Techniques. GeoChina 2018. Sustainable Civil Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-319-95783-8_20

Download citation

Publish with us

Policies and ethics