Skip to main content

Hybrid Imaging in Non-thyroidal Endocrinological Disorders

  • Chapter
  • First Online:
Nuclear Medicine Textbook

Abstract

Adrenal glands are two organs of the endocrine system that secrete different types of hormones. They are located in the retroperitoneal space, surrounded by a thick fibrous capsule, placed immediately below the diaphragm, superiorly and medially to the kidneys, between the 12th thoracic and the 1st lumbar vertebra. They have a cone shape with an inferior base, a weight of about 8 g, and sizes of about 2–3 cm in width and 4–6 cm in length. They are richly vascularized, innervated by the autonomous system, mainly through the adrenal plexus. Each adrenal consists of two distinct parts: a peripheral part, called adrenal cortex, and a central part, called adrenal medulla.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gross BH, Shapiro B. Adrenocortical scintigraphy. In: Khalkhali I, Maublant J, Goldsmith S, editors. Nuclear oncology. Philadelphia, PA: Lippincott Williams & Wilkins; 2001. p. 461–74.

    Google Scholar 

  2. Gross MD, Shapiro B, Shreve P. Radionuclide imaging of the adrenal cortex. Q J Nucl Med. 1999;43:224–32.

    CAS  PubMed  Google Scholar 

  3. Francis IR, Gross MD, Shapiro B, Korobkin M, Quint LE. Integrated imaging of adrenal disease. Radiology. 1992;184:1–13.

    Article  CAS  Google Scholar 

  4. Nocaudie-Calzada M, Huglo D, Lambert M, Ernst O, Proye C, Wemeau JL, et al. Efficacy of iodine-131 6-beta-methyl-iodo-19-norcholesterol scintigraphy and computed tomography in patients with primary aldosteronism. Eur J Nucl Med. 1999;26:1326–32.

    CAS  PubMed  Google Scholar 

  5. Troncone L, Rufini V. Nuclear medicine therapy of pheochromocytoma and paraganglioma. Q J Nucl Med. 1999;43:344–55.

    CAS  PubMed  Google Scholar 

  6. Sisson JC, Frager MS, Valk TW, Gross MD, Swanson DP, Wieland DM, et al. Scintigraphic localization of pheochromocytoma. N Engl J Med. 1981;305:12–7.

    Article  CAS  Google Scholar 

  7. Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, et al. Somatostatin receptor scintigraphy with [111ln-DTPA-D-Phel]- and [1231- Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993;20:716–31.

    Article  CAS  Google Scholar 

  8. van der Harst E, de Herder WW, Bruining HA, Bonjer HJ, de Krijger RR, Lamberts SW, et al. [123I]metaiodobenzylguanidine and [11lIn]octreotide uptake in benign and malignant pheochromocytomas. J Clin Endocrinol Metab. 2001;86:685–93.

    PubMed  Google Scholar 

  9. Kwekkeboom DJ, van Urk H, Pauw BK, Lamberts SW, Kooij PP, Hoogma RP, et al. Octreotide scintigraphy for the detection of paragangliomas. J Nucl Med. 1993;34:873–8.

    CAS  PubMed  Google Scholar 

  10. Maurea S, Cuocolo A, Reynolds JC, Tumeh SS, Begley MG, Linehan WM, et al. Iodine-131-metaiodobenzylguanidine scintigraphy in preoperative and postoperative evaluation of paragangliomas: comparison with CT and MRI. J Nucl Med. 1993;34:173–9.

    CAS  PubMed  Google Scholar 

  11. Berglund AS, Hulthen UL, Manhem P, Thorsson O, Wollmer P, Törnquist C. Metaiodobenzylguanidine (MIBG) scintigraphy and computed tomography (CT) in clinical practice. Primary and secondary evaluation for localization of phaeochromocytomas. J Intern Med. 2001;249:247–51.

    Article  CAS  Google Scholar 

  12. Shapiro B, Copp JE, Sisson JC, Eyre PL, Wallis J, Beierwaltes WH. Iodine-131 metaiodobenzylguanidine for the locating of suspected pheochromocytoma: experience in 400 cases. J Nucl Med. 1985;26:576–85.

    CAS  PubMed  Google Scholar 

  13. Velchik MG, Alavi A, Kressel HY, Engelman K. Localization of pheochromocytoma: MIGB, CT, and MRI correlation. J Nucl Med. 1989;30:328–36.

    CAS  PubMed  Google Scholar 

  14. Francis IR, Glazer GM, Shapiro B, Sisson JC, Gross BH. Complementary roles of CT and 131I-MIBG scintigraphy in diagnosing pheochromocytoma. AJR Am J Roentgenol. 1983;141:719–25.

    Article  CAS  Google Scholar 

  15. Furuta N, Kiyota H, Yoshigoe F, Hasegawa N, Ohishi Y. Diagnosis of pheochromocytoma using [1231]- compared with [1311]-metaiodobenzylguanidine scintigraphy. Int J Urol. 1999;6:119–24.

    Article  CAS  Google Scholar 

  16. Lynn MD, Shapiro B, Sisson JC, Beierwaltes WH, Meyers LJ, Ackerman R, et al. Pheochromocytoma and the normal adrenal medulla: improved visualization with I-123 MIBG scintigraphy. Radiology. 1985;155:789–92.

    Article  CAS  Google Scholar 

  17. Pasquali C, Rubello D, Sperti C, Gasparoni P, Liessi G, Chierichetti F, et al. Neuroendocrine tumor imaging: can 18F-fluorodeoxyglucose positron emission tomography detect tumors with poor prognosis and aggressive behavior? World J Surg. 1998;22:588–92.

    Article  CAS  Google Scholar 

  18. Shulkin BL, Thompson NW, Shapiro B, Francis IR, Sisson JC. Pheochromocytomas: imaging with 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET. Radiology. 1999;212:35–41.

    Article  CAS  Google Scholar 

  19. Bergström M, Bonasera TA, Lu L, Bergström E, Backlin C, Juhlin C, et al. In vitro and in vivo primate evaluation of carbon-11-etomidate and carbon-11-metomidate as potential tracers for PET imaging of the adrenal cortex and its tumors. J Nucl Med. 1998;39:982–9.

    PubMed  Google Scholar 

  20. Mariani G, Gulec SA, Rubello D, Boni G, Puccini M, Pelizzo MR, et al. Preoperative localization and radioguided parathyroid surgery. J NUcl Med. 2003;44:1443–58.

    Google Scholar 

  21. Goodwin DA, Crowley LG, Camargo CA. Localization of a mediastinal adenoma by selenomethionine Se75 scanning. JAMA. 1969;208:2333–5.

    Article  CAS  Google Scholar 

  22. DiGiulio W, Morales JO. The value of the selenomethionine Se 75 scan in preoperative localization of parathyroid adenomas. JAMA. 1969;209:1873–80.

    Article  CAS  Google Scholar 

  23. Coakley AJ, Kettle AG, Wells CP, O’Doherty MJ, Collins RE. 99Tcm sestamibi – a new agent for parathyroid imaging. Nucl Med Commun. 1989;10:791–4.

    Article  CAS  Google Scholar 

  24. Mitchell BK, Cornelius EA, Zoghbi S, Murren JR, Ghoussoub R, Flynn SD, Kinder BK. Mechanism of technetium 99m sestamibi parathyroid imaging and the possible role of p-glycoprotein. Surgery. 1996;120:1039–45.

    Article  CAS  Google Scholar 

  25. Taillefer R, Boucher Y, Potvin C, Lambert R. Detection and localization of parathyroid adenomas in patients with hyperparathyroidism using a single radionuclide imaging procedure with technetium-99m-sestamibi (double-phase study). J Nucl Med. 1992;33:1801–17.

    CAS  PubMed  Google Scholar 

  26. Michaud L, Balogova S, Burgess A, Ohnona J, Huchet V, Kerrou K, et al. A pilot comparison of 18F-fluorocholine PET/CT, ultrasonography and 123I/99mTc-sestaMIBI dual-phase dual-isotope scintigraphy in the preoperative localization of hyperfunctioning parathyroid glands in primary or secondary hyperparathyroidism: influence of thyroid anomalies. Medicine (Baltimore). 2015;94(41):e1701. https://doi.org/10.1097/MD.0000000000001701.

    Article  CAS  Google Scholar 

  27. Caldarella C, Treglia G, Isgrò MA, Giordano A. Diagnostic performance of positron emission tomography using 11C-methionine in patients with suspected parathyroid adenoma: a meta-analysis. Endocrine. 2013;43:78–83.

    Article  CAS  Google Scholar 

  28. Kluijfhout WP, Pasternak JD, Drake FT, Beninato T, Gosnell JE, Shen WT, et al. Use of PET tracers for parathyroid localization: a systematic review and meta-analysis. Langenbecks Arch Surg. 2016;401(7):925–35.

    Article  Google Scholar 

  29. Hundahl SA, Fleming ID, Fremgen AM, Menck HR. Two hundred eighty-six cases of parathyroid carcinoma treated in the U.S. between 1985–1995: a National Cancer Data Base Report. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer. 1999;86:538–44.

    Article  CAS  Google Scholar 

  30. Al-Sobhi S, Ashari LH, Ingemansson S. Detection of metastatic parathyroid carcinoma with Tc-99m sestamibi imaging. Clin Nucl Med. 1999;24:21–3.

    Article  CAS  Google Scholar 

  31. Santiago Chinchilla A, Ramos Font C, Murosde Fuentes MA, Navarro-Pelayo Láinez M, Palacios Gerona H, et al. False negative of the scintigraphy with 99mTc-sestamibi in parathyroid carcinoma with associated brown tumors. Contributions of the 18F-FDG-PET/CT. Rev Esp Med Nucl. 2011;30:174–9.

    Article  CAS  Google Scholar 

  32. Kemps B, van Ufford HQ, Creyghton W, de Haas M, Baarslag HJ, Rinkes IB, et al. Brown tumors simulating metastases on FDG PET in a patient with parathyroid carcinoma. Eur J Nucl Med Mol Imaging. 2008;35:850.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duccio Volterrani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Volterrani, D., Guidoccio, F., Mariani, G. (2019). Hybrid Imaging in Non-thyroidal Endocrinological Disorders. In: Volterrani, D., Erba, P.A., Carrió, I., Strauss, H.W., Mariani, G. (eds) Nuclear Medicine Textbook. Springer, Cham. https://doi.org/10.1007/978-3-319-95564-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95564-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95563-6

  • Online ISBN: 978-3-319-95564-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics