Skip to main content

High Magnetic Field Processing of Metal Alloys

  • Chapter
  • First Online:
Solidification Processing of Metallic Alloys Under External Fields

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 273))

  • 1079 Accesses

Abstract

Recently, Direct Current (DC) magnetic field processing of materials has found widespread applications in metallurgy, especially in metals and semiconductor industries. The main goal is to control the behavior of melts during solidification so as to improve process performance and achieve better quality products. DC magnetic fields are effective in introducing some special magnetohydrodynamic effects, e.g., flow damping, which are commonly used in continuous casting of steels or crystal growth control. In parallel, the development of super conducting technology, which is able to produce high magnetic fields in a large space, has open many new possibilities in control of the processing of materials in solid and liquid state. The novelty comes from the creation of magnetization forces on non-magnetic or feeble magnetic materials due to high magnetic fields. Morerover, it has been realized quite recently that the thermo-electric phenomena under high DC magnetic field can produce strong electromagnetic forces in solid and liquid metals, leading to a phenomenon called Thermo-Electric-Magnetic Convection (TEMC). The forces are able to generate significant liquid motion especially when temperature gradients are present, and therefore strongly influence the solidification of metallic alloys. This chapter reviews the major progresses and applications related to the uses of strong/intense DC magnetic fields in processing of materials (mainly metallic alloys) in solidification processes. In the first section, we review the underlying principles in magnetohydrodynamics and magnetic effects. In the second section, we discuss the phenomena induced by DC magnetic fields in materials processing. We deal in particular with flow damping effects on liquid metals, and control of structure of materials during solidification, including texturing, phase separation and thermoelectric effect. Finally we give two examples of successful industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.K. Moffatt, M.R.E. Proctor (eds.), in Proceedings of the Symposium of the International Union of Theoretical and Applied Mechanics, Cambridge, UK, Sept 1982 (The Metals Society, 1982)

    Google Scholar 

  2. S. Molokov, R. Moreau, H.K. Moffatt, Magnetohydrodynamics, Historical Evolution and Trends (Springer, Dordrecht, 2007)

    Book  Google Scholar 

  3. S. Asai, Electromagnetic Processing of Materials (Springer, Dordrecht, 2012)

    Book  Google Scholar 

  4. B.G. Thomas, R. Chaudhary, in State of the Art in Electromagnetic Flow Control in Continuous Casting of Steel Slabs: Modelling and Plant Validation. 6th International Conference on Electromagnetic Processing of Materials (Forschunszentrum Dresden-Rossendorf, Dresden, 2009), pp. 9–14, isbn:978-3-936104-65-3

    Google Scholar 

  5. H. Ozoe, J. Szmyd, T. Tagawa, Magnetic fields in semiconductor crystal growth, in Magnetohydrodynamics, Fluid Mechanics and Its Applications, ed. by S. Molokov, R. Moreau, H.K. Moffatt, vol. 80 (Springer, Dordrecht, 2007), pp. 375–390

    Google Scholar 

  6. B.Q. Li, Solidification processing of materials in magnetic field. JOM 50(2), 1–13 (1998)

    Google Scholar 

  7. E. Beaugnon, R. Tournier, Levitation of organic materials. Nature 349(6309), 470 (1991). https://doi.org/10.1038/349470a0

    Article  Google Scholar 

  8. E. Beaugnon, D. Bourgault, D. Braithwaite, P. De Rango, R. Perrier de la Bathie, A. Sulpice, R. Tournier, Material processing in high static magnetic field. A review of an experimental study on levitation, phase separation, convection and texturation. J. Phys. I 3, 399–421 (1993)

    CAS  Google Scholar 

  9. S. Ueno, M. Iwasaka, Properties of diamagnetic fluid in high gradient magnetic fields. J. Appl. Phys. 75, 7177–7179 (1994)

    Article  Google Scholar 

  10. N. Hirota, H. Uetake, T. Takayama, Y. Ikezoe, H. Wada, K. Kitazawa, in Magnetic Field Effects on Feeble Magnetic Materials and their Applications, ed by S. Asai, Y. Fautrelle, P. Gillon, F. Durand. 4th International Conference on EPM (EPM Madylam, Grenoble, 2003), pp. 453–458

    Google Scholar 

  11. Z.H.I. Sun, M. Guo, J. Vleugels, O. Van der Biest, B. Blanpain, Strong static magnetic field processing of metallic materials: A review. Curr. Opinion Solid State Mater. Sci. 16, 254–276 (2012)

    Article  CAS  Google Scholar 

  12. A.J. Shercliff, Thermoelectric magnetohydrodynamics. J. Fluid Mech. 91, 231–251 (1979)

    Article  CAS  Google Scholar 

  13. E. Mikelson, Y.-K. Karklin, Control of crystallization processes by means of magnetic fields. J. Cryst. Growth 52, 524–529 (1981)

    Article  Google Scholar 

  14. A.L. Gorbunov, Effect of thermoelectromagnetic convection on the production of bulk single crystals consisting of semiconductor melts in a constant magnetic field. Magn. Gidrodin. 4, 65–69 (1987)

    Google Scholar 

  15. P. Lehmann, R. Moreau, D. Camel, R. Bolcato, Modification of interdendritic convection in directional solidification by a uniform magnetic field. Acta Mater. 46, 4067–4079 (1998)

    Article  CAS  Google Scholar 

  16. S. Yesilyurt, L. Vujisic, S. Motakef, F.R. Szofran, A. Croell, The influence of thermoelectromagnetic convection on the Bridgman growth of semiconductors. J. Cryst. Growth 211, 360–364 (2000)

    Article  CAS  Google Scholar 

  17. X. Li, Y. Fautrelle, Z.M. Ren, Influence of an axial high magnetic field on the liquid-solid transformation in Al-Cu hypoeutectic alloys and on the microstructure of the solid. Acta Mater. 55, 1377–1386 (2007)

    Article  CAS  Google Scholar 

  18. X. Li, Y. Fautrelle, K. Zaidat, A. Gagnoud, Z.M. Ren, Y.D. Chang, R. Moreau, C. Esling, Columnar-to-equiaxed transition in Al-based alloys during directional solidification under a high magnetic field. J. Cryst. Growth 312(2), 267–272 (2010)

    Article  CAS  Google Scholar 

  19. J. Wang, Y. Fautrelle, Z.M. Ren, X. Li, H. Nguyen-Thi, N. Mangelinck-Noel, G. Salloum Abou Jaoude, Y.B. Zhong, I. Kaldre, A. Bojarevics, L. Buligins, Thermoelectric magnetic force acting on the solid during directional solidification under a static magnetic field. Appl. Phys. Lett. 101, 251904-1–251904-4 (2012)

    Google Scholar 

  20. R. Moreau, Magnetohydrodynamics (Kluwer Academic, Dordrecht, 1990)

    Book  Google Scholar 

  21. Y.Y. Khine, S.J. Walker, Thermoelectric MHD effects during Bridgman semiconductor crystal growth with a uniform axial magnetic field. J. Cryst. Growth 183, 150–158 (1998)

    Article  CAS  Google Scholar 

  22. I. Kaldre, Y. Fautrelle, J. Etay, A. Bojarevics, L. Buligins, Absolute thermoelectric power of Pb-Sn alloys. Mod. Phys. Lett. B 25(10), 731–738 (2011)

    Article  CAS  Google Scholar 

  23. X. Li, Y. Fautrelle, Z.M. Ren, Influence of thermoelectric effects on the solid–liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al–Cu alloys under a magnetic field. Acta Mater. 55, 3803–3813 (2007)

    Article  CAS  Google Scholar 

  24. K. Takahashi, I. Mogi, S. Awaji, K. Watanabe, in Magnetic Levitation Furnace Combined with a Hybrid Magnet. 5th International Symposium on Electromagnetic Processing of Materials (The Iron and Steel Institute of Japan, Sendai, 2006), pp. 599–603, isbn:4-930980-55-0 C3057

    Google Scholar 

  25. G.A. Thomson, W.J. Wagner, Preparation and properties of InAs1-xPx alloys. J. Phys. Chem. Solids 32, 2613–2619 (1971)

    Article  Google Scholar 

  26. Z. Hu, Y. Zhang, J. She, The role of Nd on the microstructural evolution and compressive behavior of Ti–Si alloys. Mater. Sci. Eng. A 560, 583–588 (2013)

    Article  CAS  Google Scholar 

  27. H.E. Brandt, Levitation in physics. Science 243, 349–355 (1989)

    Article  CAS  Google Scholar 

  28. N. Hirota, Magneto-Archimedes effect and related effect, in Magneto-science - Magnetic field effects on materials: Fundamentals and applications, ed. by M. Yamaguchi, Y. Tanimoto Kodansha (Springer, Berlin, 2006), pp. 55–70

    Google Scholar 

  29. B.T. Jones, A necessary condition for magnetic levitation. J. Appl. Phys. 50, 5057–5058 (1979)

    Article  Google Scholar 

  30. Y. Ikezoe, T. Kaihatsu, S. Sakae, et al., Separation of feeble magnetic particles with magneto-Archimede levitation. Energy Convers. Manag. 43, 417–425 (2002)

    Article  CAS  Google Scholar 

  31. M. Tagami, M. Hamai, I. Mogi, K. Watanabe, M. Motokawa, Solidification of levitating water in a gradient strong magnetic field. J. Cryst. Growth 203, 594–598 (1999)

    Article  CAS  Google Scholar 

  32. Q. Wang, T. Liu, A. Gao, et al., A novel method for in situ formation of bulk layered composites with compositional gradients by magnetic field gradient. Scr. Mater. 56, 1087–1090 (2007)

    Article  CAS  Google Scholar 

  33. X. Li, Z.M. Ren, Y. Fautrelle, Phase distribution and phase structure control through a high gradient magnetic field during the solidification process. Mater. Des. 29, 1796–1801 (2008)

    Article  CAS  Google Scholar 

  34. S. Maki, Y. Tanimoto, C. Chikako Udagawa, S. Shotaro Morimoto, M. Hagiwara, In situ observation of containerless protein crystallization by magnetically levitating crystal growth. Jpn. J. Appl. Phys. 55, 035505 (2016)

    Article  CAS  Google Scholar 

  35. J. Langer, Issues and opportunities in materials research. Phys. Today 45, 24–31 (1992)

    Article  CAS  Google Scholar 

  36. B.W. Thomson, Thermal convection in a magnetic field. Philos. Mag. Ser. 42, 1417–1432 (1951)

    Article  Google Scholar 

  37. B. Lehnert, C.N. Little, Experiments on the effect of inhomogeneity and obliquity of a magnetic field in inhibiting convection. Tellus 9, 97–103 (1957)

    Google Scholar 

  38. K.-H. Spitzer, M. Dubke, K. Schwerdtfeger, Rotational electromagnetic stirring in continuous casting of round strands. Metall. Trans. B 17, 119–131 (1986)

    Article  Google Scholar 

  39. P.H. Utech, C.M. Flemings, Elimination of solute banding in indium antimonite crystals by growth in a magnetic field. J. Appl. Phys. 37, 2021–2024 (1966)

    Article  CAS  Google Scholar 

  40. L. He, X. Li, P. Zhu, et al., Effects of high magnetic field on the evolutions of constituent phases in 7085 aluminum alloy during homogenization. Mater. Charact. 71, 19–23 (2012)

    Article  CAS  Google Scholar 

  41. M.K. Liu, P.D. Lu, T.H. Zhou, et al., Influence of a high magnetic field on the microstructure and properties of a Cu-Fe-Ag in situ composite. Mater. Sci. Eng. A 584, 114–120 (2013)

    Article  CAS  Google Scholar 

  42. E.M. Savitsky, R.S. Torchinova, S.A. Turanov, Effect of crystallization in magnetic field on the structure and magnetic properties of Bi-Mn alloys. J. Cryst. Growth 52, 519–523 (1981)

    Article  Google Scholar 

  43. D.E. Farrell, B.S. Chandrasekhar, M.R. DeGuire, et al., Superconducting properties of aligned crystalline grains of Y1Ba2Cu3O7-δ. Phys. Rev. B 36, 4025–4027 (1987)

    Article  CAS  Google Scholar 

  44. P. De Rango, M. Lees, P. Lejay, et al., Texturing of magnetic materials at high temperature by solidification in a magnetic field. Nature 349, 770–772 (1991)

    Article  Google Scholar 

  45. L. Zhang, J. Vleugels, O. Van der Biest, Slip casting of alumina suspensions in a strong magnetic field. J. Am. Ceram. Soc. 93, 3148–3152 (2010)

    Article  CAS  Google Scholar 

  46. X.W. Zhu, Y. Sakka, T.S. Suzuki, T. Uchikoshi, S. Kikkawa, The c-axis texturing of seeded Si3N4 with β-Si3N4 whiskers by slip casting in a rotating magnetic field. Acta Mater. 58, 146–161 (2010)

    Article  CAS  Google Scholar 

  47. S. Li, K. Sassa, S. Asai, Preferred orientation of Si3N4 ceramics by slip casting in a high magnetic field. Ceram. Int. 32, 701–705 (2006)

    Article  CAS  Google Scholar 

  48. X. Li, Z.M. Ren, Y. Fautrelle, Effect of a vertical magnetic field on the dendrite morphology during Bridgman crystal growth of Al–4.5 wt% Cu. J. Cryst. Growth 290, 571–575 (2006)

    Article  CAS  Google Scholar 

  49. X. Li, Y. Fautrelle, Z. Ren, Influence of a high magnetic field on columnar dendrite growth during directional solidification. Acta Mater. 55, 5333–5347 (2007)

    Article  CAS  Google Scholar 

  50. Y.W. Ma, Z.T. Wang, To enhance Jc of Bi-2223 Ag-sheathed superconducting tapes by improving grain alignment with magnetic field. Phys. C 282, 2619–2620 (1997)

    Article  Google Scholar 

  51. T. Liu, Q. Wang, C. Zhang, et al., Formation of chainlike structures in an Mn-89.7 wt%Sb alloy during isothermal annealing process in the semisolid state in a high magnetic field. J. Mater. Res. 24, 2321–2330 (2011)

    Article  Google Scholar 

  52. H. Yasuda, I. Ohnaka, Y. Yamamoto, et al., Formation of crystallographically aligned BiMn grains by semi-solid processing of rapidly solidified Bi-Mn alloys under a magnetic field. Mater. Trans. 44, 2207–2212 (2003)

    Article  CAS  Google Scholar 

  53. C. Lou, Q. Wang, C. Wang, et al., Migration and rotation of TiAl3 particles in an Al-melt solidified under high magnetic field conditions. J. Alloys Compd. 472, 225–229 (2009)

    Article  CAS  Google Scholar 

  54. X. Li, Y. Fautrelle, Z. Ren, et al., Effect of a high magnetic field on the Al–Al3Ni fiber eutectic during directional solidification. Acta Mater. 58, 2430–2441 (2010)

    Article  CAS  Google Scholar 

  55. S. Awaji, K. Watanabe, M. Motokawa, et al., Melt textured process for YBCO in high magnetic fields. IEEE Trans. Appl. Supercond. 9, 2014–2017 (1999)

    Article  Google Scholar 

  56. X. Li, Z. Ren, Y. Fautrelle, The alignment, aggregation and magnetization behaviors in MnBi–Bi composites solidified under a high magnetic field. Intermetallics 15, 845–855 (2007)

    Article  CAS  Google Scholar 

  57. S. Asai, K. Sassa, M. Tahashi, Crystal orientation of non-magnetic materials by imposition of a high magnetic field. Sci. Technol. Adv. Mater. 4, 455–460 (2003)

    Article  CAS  Google Scholar 

  58. R. Tournier, E. Beaugnon, Texturing by cooling a metallic melt in a magnetic field. Sci. Technol. Adv. Mater. 10, 014501 (2009)

    Article  CAS  Google Scholar 

  59. M. Villeret, S. Rodriguez, E. Kartheuser, Magnetic anisotropy of cubic iron-based diluted magnetic semiconductors. Phys. Rev. B 43, 3443–3449 (1991)

    Article  CAS  Google Scholar 

  60. H. Morikawa, K. Sassa, S. Asai, Control of precipitating phase alignment and crystal orientation by imposition of a high magnetic field. Mater. Trans. JIM 39, 814–818 (1998)

    Article  CAS  Google Scholar 

  61. M. Hiroshi, T. Yoshiaki, F. Masao, et al., A new high-Tc oxide superconductor without a rare earth element. Jpn. J. Appl. Phys. 27, L209 (1988)

    Article  Google Scholar 

  62. M. Mansori, H. Faqir, P. Satre, et al., A new single crystal growth method of (Bi,Pb)2Sr2CaCu2Oz superconductor. J. Cryst. Growth 197, 141–146 (1999)

    Article  CAS  Google Scholar 

  63. F. Gaucherand, E. Beaugnon, Magnetic texturing in ferromagnetic cobalt alloys. Phys. B 346-347, 262–266 (2004)

    Article  CAS  Google Scholar 

  64. S. Ren, Z.M. Ren, W. Ren, Growth orientation control of Zn films with strong magnetic field. Chin. J. Vac. Sci. Technol. 4, 430–433 (2010)

    Google Scholar 

  65. K. Iwai, J. Akiyama, M.G. Sung, et al., Application of a strong magnetic field on materials fabrication and experimental simulation. Sci. Technol. Adv. Mater. 7, 365–368 (2006)

    Article  CAS  Google Scholar 

  66. K. Kang, L.H. Lewis, A.R. Moodenbaugh, Alignment and analyses of MnBi/Bi nanostructures. Appl. Phys. Lett. 87, 062505 (2005)

    Article  CAS  Google Scholar 

  67. C.G. Kang, S.W. Youn, Mechanical properties of particulate reinforced metal matrix composites by electromagnetic and mechanical stirring and reheating process for thixoforming. J. Mater. Process. Technol. 147, 10–22 (2004)

    Article  CAS  Google Scholar 

  68. O. Bonino, P.D. Rango, R. Tournier, Directional growth of polycrystalline magnetostrictive TbxDy1−xFey compounds by casting in a strong unidirectional gradient. J. Magn. Magn. Mater. 212, 225–230 (2000)

    Article  CAS  Google Scholar 

  69. L. Valko, M. Valko, On influence of the magnetic field effect on the solid-melt phase transformations. IEEE Trans. Magn. 30, 1122–1123 (1994)

    Article  Google Scholar 

  70. C. Rosenblatt, Magnetic field dependence of the nematic-isotropic transition temperature. Phys. Rev. A 24, 2236 (1981)

    Article  CAS  Google Scholar 

  71. H. Inaba, K.I. Tozaki, H. Hayashi, C. Quan, N. Nemoto, T. Kimura, Magnetic effect on the phase transitions of n-C32H66 measured by high resolution and super-sensitive DSC. Phys. B Condens. Matter 324, 63–71 (2002)

    Article  CAS  Google Scholar 

  72. H. Inaba, T. Saitou, K. Tozaki, H. Hayashi, Effect of the magnetic field on the melting transition of H2O and D2O measured by a high resolution and supersensitive differential scanning calorimeter. J. Appl. Phys. 96 (2004). https://doi.org/10.1063/1.1803922

  73. X. Li, Y. Fautrelle, Z.M. Ren, High-magnetic-field-induced solidification of diamagnetic Bi. Scr. Mater. 59, 407–410 (2008)

    Article  CAS  Google Scholar 

  74. M.N. Magomedov, On the magnetic-field-induced changes in the parameters of phase transitions. Tech. Phys. Lett. 28, 116–118 (2002)

    Article  CAS  Google Scholar 

  75. M. Hasegawa, S. Asai, Effects of static magnetic field on undercooling of a copper melt. J. Mater. Sci. 27, 6123–6126 (1992)

    Article  CAS  Google Scholar 

  76. Y.K. Zhang, J. Gao, Y.L. Zhou, et al., Undercooling behavior of glass-fluxed Sb melts under gradient magnetic fields. J. Mater. Sci. 45, 1648–1654 (2009)

    Article  CAS  Google Scholar 

  77. T. Liu, Q. Wang, F. Liu, et al., Nucleation behavior of bulk Ni–Cu alloy and pure Sb in High magnetic fields. J. Cryst. Growth 321, 167–170 (2011)

    Article  CAS  Google Scholar 

  78. J. Wang, E. Beaugnon, J. Li, et al., in Effect of Static Magnetic Fields on the Recalescence Behavior of Undercooled Co-Sn Liquid. The 7th International Conference on Electromagnetic Processing of Materials Beijing, 2012

    Google Scholar 

  79. C.J. Li, H. Yang, Z.M. Ren, et al., On nucleation temperature of pure aluminum in magnetic fields. Prog. Electromagn. Res. Lett. 15, 45–52 (2010)

    Article  Google Scholar 

  80. C.J. Li, Z.M. Ren, W.L. Ren, Effect of magnetic fields on solid-melt phase transformation in pure bismuth. Mater. Lett. 63, 269–271 (2009)

    Article  CAS  Google Scholar 

  81. C.J. Li, H. Yang, Z.M. Ren, et al., Application of differential thermal analysis to investigation of magnetic field effect on solidification of Al-Cu hypereutectic alloy. J. Alloys Compd. 505, 108–112 (2010)

    Article  CAS  Google Scholar 

  82. C. Li, R. Guo, Z. Yuan, et al., Magnetic-field dependence of nucleation undercoolings in nonmagnetic metallic melts. Philos. Mag. Lett. 95, 37–43 (2015)

    Article  CAS  Google Scholar 

  83. Thermoelectric effect: http://en.wikipedia.org/wiki/Thermoelectric_effect. Brief History of thermoelectric: http://thermoelectrics.caltech.edu/thermoelectrics

  84. M.A. Jaworski, T.K. Gray, M. Antonelli, J.J. Kim, C.Y. Lau, M.B. Lee, M.J. Neumann, W. Xu, D.N. Ruzic, Thermoelectric MHD stirring of liquid metals. Phys. Rev. Lett. 104, 094503 (2010)

    Article  CAS  Google Scholar 

  85. E. Luebke, B.L. Vandenberg, Heat-exchanger pump, U.S. Patent 2,748,710, Jun 1956

    Google Scholar 

  86. W. Murgatroyd, Improvements in or relating to heat transfer systems, UK Patent, UK appl 20911/51, 1951

    Google Scholar 

  87. K.F. Schoh, An experimental liquid metal thermoelectric electromagnetic pump heat exchange. Report of General Electric Company No. R56GL94, 1956

    Google Scholar 

  88. D. Rex Von, Thermoelektrische Pumpen fur flussige Metalle. VDI Z 103, 17–23 (1961)

    Google Scholar 

  89. J.F. Osterle, S.W. Angrist, The thermoelectric hydromagnatic pump. Trans. A.S.M.E. C 86, 166–179 (1964)

    Article  CAS  Google Scholar 

  90. R.S. Rocklin, Thermoelectric pump, U.S. Patent 3,116,693, 1964

    Google Scholar 

  91. A.M. Perlow, M.H. Dieckamp, Thermoelectric pump, U.S. Patent 3,288,070, Nov 1966

    Google Scholar 

  92. M. Cachard de, P. Caunes, Thermosyphon à sodium pour irradiation en piled’é1ements combustibles. Centre d’Etudes Nucleaires Grenoble Rep 69, 472–485 (1969)

    Google Scholar 

  93. V.S. Makarov, A.K. Cherkasskii, Pressure consumption characteristic and efficiency of a thermoelectriomagnetic pump. Magn. Gidrodin. 5, 127–141 (1969)

    Google Scholar 

  94. A.J. Shercliff, The pipe end problem in thermoelectric MHD. J. Appl. Math. Phys. 30, 94–112 (1980)

    Google Scholar 

  95. A.J. Shercliff, Thermoelectric MHD with walls parallel to the magnetic field. Int. J. Heat Mass Transf. 23, 1219–1228 (1980)

    Article  Google Scholar 

  96. A.L. Gorbunov, D.E. Lyumkis, Unique features encountered in the influence exerted by thermoelectromagnetic convection on melt hydrodynamics in the process of monocrystal growth by the czochralski method in a magnetic field. Magn. Gidrodin. 7, 75–82 (1990)

    Google Scholar 

  97. T. Alboussière, R. Moreau, D. Camel, Influence of a magnetic field on the solidification of metallic alloys. C. R. Acad. Sci. 313, 749–755 (1991)

    Google Scholar 

  98. R. Moreau, O. Laskar, M. Tanaka, et al., Thermoelectric MHD effects on solidification of metallic alloys in the dendritic regime. Mater. Sci. Eng. 173, 93–100 (1993)

    Article  Google Scholar 

  99. O. Lielausis, J. Kjavins, A. Mikelsons, J. Valdmanis, V. Golovanov, Potentials, currents and thermoelectric effects at continuous casting, in Proceedings of 1st International Symposium on Electromagnetic Processing of Materials, (The Iron and Steel Institute of Japan, Nagoya, 1994), pp. 555–560

    Google Scholar 

  100. S. Kaddeche, B.H. Hadid, D. Henry, Macrosegregation and convection in the horizontal Bridgman configuration 1: dilute alloys. J. Cryst. Growth 135, 341–353 (1994)

    Article  CAS  Google Scholar 

  101. R. Moreau, O. Laskar, M. Tanaka, Thermoelectric and MHD effects on solidification alloys, in Proceedings of 1st International Symposium on Electromagnetic Processing of Materials, (The Iron and Steel Institute of Japan, Nagoya, 1994), pp. 549–554

    Google Scholar 

  102. P. Lehmann, R. Moreau, D. Camel, R. Bolcato, Modification of interdendritic convection by a magnetic field. Mater. Sci. Forum 217-222, 235–240 (1996)

    Article  CAS  Google Scholar 

  103. P. Lehmann, R. Moreau, D. Camel, R. Bolcato, A simple analysis of the effect of convection on the structure of the mushy zone in the case of horizontal Bridgman solidification comparison with experimental results. J. Cryst. Growth 183, 690–704 (1998)

    Article  CAS  Google Scholar 

  104. P. Dold, R.F. Szofran, W.K. Benz, Thermoelectromagnetic convection in vertical Bridgman grown germanium-silicon. J. Cryst. Growth 291, 1–7 (2006)

    Article  CAS  Google Scholar 

  105. A. Cröll, R.F. Szofran, P. Dold, et al., Floating zone growth of silicon in magnetic fields 2: strong static axial fields. J. Cryst. Growth 183, 554–563 (1998)

    Article  Google Scholar 

  106. Y.Y. Khine, S.J. Walker, R.F. Szofran, Thermoelectric MHD effects during Bridgman semiconductor crystal growth with a uniform axial magnetic field. J. Cryst. Growth 212, 584–596 (2000)

    Article  CAS  Google Scholar 

  107. S. Yesilyurt, L. Vujisic, S. Motakef, F.R. Szofran, et al., A numerical investigation of the effect of thermoelectriomagnetic convection on the Bridgman growth of Ge1-xSix. J. Cryst. Growth 207, 278–291 (1999)

    Article  CAS  Google Scholar 

  108. S. Yesilyurt, L. Vujisic, S. Motakef, F.R. Szofran, A. Croell, The influence of thermoele-ctromagnetic convection on the Bridgman growth of semiconductors. J. Cryst. Growth 211, 360–364 (2000)

    Article  CAS  Google Scholar 

  109. S.J. Walker, A. Croell, R.F. Szofran, Thermoelectromagnetic convection in floating zone silicon growth with a nonaxisymmetric temperature and a strong magnetic field. J. Cryst. Growth 223, 73–82 (2001)

    Article  CAS  Google Scholar 

  110. Q. Liu, Thermoelectric MHD effects on directional solidification structure of Al-Cu alloy, Master Thesis, Liaoning Technical University, 2002

    Google Scholar 

  111. Z.Y. Gao, Effect of TEMHD on the microstructure of directionally solidified Al alloy, Master Thesis, Liaoning Technical University, 2006

    Google Scholar 

  112. X. Li, Z.M. Ren, Y. Fautrelle, et al., Degeneration of columnar dendrites during directional solidification under a high magnetic field. Scr. Mater. 60, 443–446 (2009)

    Article  CAS  Google Scholar 

  113. F. Baltaretu, J. Wang, S. Letout, Z.M. Ren, X. Li, O. Budenkova, Y. Fautrelle, Thermoelectric effects on electroconducting particles in liquid metal. Magnetohydrodynamics 51(1), 3–13 (2015)

    Google Scholar 

  114. G. Salloum-Abou-Jaoude, J. Wang, L. Abou-Khalil, G. Reinhart, Z.M. Ren, N. Mangelinck-Noel, X. Li, Y. Fautrelle, H. Nguyen-Thi, Motion of equiaxed grains during directional solidification understatic magnetic field. J. Cryst. Growth 417, 25–30 (2015)

    Article  CAS  Google Scholar 

  115. X. Li, Y. Fautrelle, Z.M. Ren, Morphological instability of cell and dendrite during directional solidification under a high magnetic field. Acta Mater. 56, 3146–3161 (2008)

    Article  CAS  Google Scholar 

  116. J. Wang, Y. Fautrelle, H. Nguyen Thi, G. Reinhart, H. Liao, X. Li, Y. Zhong, Z. Ren, Thermoelectric magnetohydrodynamic flows and their induced change of solid–liquid interface shape in static magnetic field-assisted directional solidification. Metall. Mater. Trans. A 47A, 1169–1179 (2016)

    Article  CAS  Google Scholar 

  117. H. Yasuda, K. Nogita, C. Gourlay, et al., In-situ observation of Sn alloy solidification at Spring8. J. Jpn. Weld. Soc. 78, 6–9 (2009)

    Google Scholar 

  118. W.L. Ren, T. Zhang, Z.M. Ren, et al., A dramatic increase in dendrite number for directionally solidified superalloy DZ417G with a strong static magnetic field. Mater. Lett. 63, 382–385 (2009)

    Article  CAS  Google Scholar 

  119. Y. Shen, Z.M. Ren, X. Li, et al., Effect of a low axial magnetic field on the primary Al2Cu phase growth in a directionally solidified Al-Cu hypereutectic alloy. J. Cryst. Growth 336, 67–71 (2011)

    Article  CAS  Google Scholar 

  120. X. Li, Y. Fautrelle, Z.M. Ren, et al., Effect of a high magnetic field on the morphological instability and irregularity of the interface of a binary alloy during directional solidification. Acta Mater. 57, 1689–1701 (2009)

    Article  CAS  Google Scholar 

  121. X. Li, A. Gagnoud, Y. Fautrelle, et al., Investigation of thermoelectric magnetic force in solid and its effects on morphological instability in directional solidification. J. Cryst. Growth 324, 217–224 (2011)

    Article  CAS  Google Scholar 

  122. X. Li, Y. Fautrelle, Z.M. Ren, Morphological instability of interface, cell and dendrite during directional solidification under strong magnetic field. J. Cryst. Growth 318, 23–27 (2011)

    Article  CAS  Google Scholar 

  123. X. Li, A. Gagnoud, Y. Fautrelle, et al., Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field. Acta Mater. 60, 3321–3332 (2012)

    Article  CAS  Google Scholar 

  124. X. Li, Y. Fautrelle, K. Zaidat, et al., Columnar-to-equiaxed transitions in Al-based alloys during directional solidification under a high magnetic field. J. Cryst. Growth 312, 267–272 (2010)

    Article  CAS  Google Scholar 

  125. X. Li, Y.D. Zhang, Y. Fautrelle, Z.M. Ren, C. Esling, Experimental evidence for liquid/solid interface instability caused by the stress in the solid during directional solidification under a strong magnetic field. Scr. Mater. 60, 489–492 (2009)

    Article  CAS  Google Scholar 

  126. E. Takeuchi, Applied MHD in the process of continuous casting, in Magnetohydrodynamics in Process Metallurgy, ed. by J. Szekely, J.W. Evans, K. Blazek, N. El Kaddah (The Minerals, Metals & Materials Society, Warrendale, 1991), pp. 189–202

    Google Scholar 

  127. E. Takeuchi, H. Tanaka, H. Kajioka, International Symposium on Electromagnetic Processing of Materials (The Iron and Steel Institute of Japan, Tokyo, 1994), pp. 364–371

    Google Scholar 

  128. S. Takeuchi, in Application of DC Magnetic Field to Iron and Steel Making Technologies EPM 2000. 3rd International Symposium on Electromagnetic Processing of Materials (The Iron and Steel Institute of Japan, Tokyo, 2000), pp. 171–175

    Google Scholar 

  129. B.G. Thomas, R. Singh, R. Chaudary, P. Vanka, in Flow Control with Ruler Electromagnetic Braking (EMBr) in Continuous Casting of Steel Slabs. BAC2013. Fifth Baosteel Biennial Academic Conference, Shanghai, PRC, June 4-6, 2013

    Google Scholar 

  130. S. Kunstreich, T. Gautreau, J.Y. Ren, A. Codutti, F. Guastini, M. Petronio, F. Vecchiet, in Experimental Approach to Develop Multi-Mode® EMB, An Advanced Electromagnetic Brake for Thin Slab Casters. 8th International Conference on Electromagnetic Processing of Materials (SIMAP, Saint Martin d’Heres, 2015), pp. 369–372, isbn:978-2-9553861-0-1

    Google Scholar 

  131. J. Etay, Y. Delannoy, Low frequency wave at the meniscus of a continuous caster generated by a DC magnetic field. Magnetohydrodynamics 39(4), 445–452 (2003)

    Google Scholar 

  132. S. Binod, P.A. Davidson, J. Etay, On the control of surface waves by a vertical magnetic field. Phys. Fluids 17, 117101 (2005)

    Article  CAS  Google Scholar 

  133. C.J. Xu, X.J. Zhang, J. Li, Z.Y. Wang, L.W. Zhang, Analysis of the effects of an electromagnetic brake (EMBr) on flow behaviors in the large slab continuous casting mold. METABK 55(3), 317–320 (2016)

    Google Scholar 

  134. Y. Gelfgat, Electromagnetic field application in the process of single crystal growth under microgravity. Acta Astronaut. 37, 333–345 (1995)

    Article  Google Scholar 

  135. T. Suzuki, N. Isawa, Y. Okbo, K. Hoshi, Cz Silicon Crystals Grown in a Transverse Magnetic Field. Semiconductor Silicon (The Electrochemical Society, Pennington, 1981), pp. 90–100

    Google Scholar 

  136. S. Kobayashi, Effects of an external magnetic field on solute distribution in Czochralski grown crustals—a theoretical analysis. J. Cryst. Growth 75, 301–308 (1986)

    Article  CAS  Google Scholar 

  137. A. Krause, A. Muiznieks, A. Mühlbauer, T. Wetzel, E. Tomzig, L. Gorbunov, A. Pedchenko, J. Virbulis, Numerical 3D modeling of turbulent melt flow in a large CZ system with horizontal DC magnetic field. II. Comparison with measurements. J. Cryst. Growth 265, 14–27 (2004)

    Article  CAS  Google Scholar 

  138. K. Hoshikawa, Czochralski silicon crystal growth in the vertical magnetic field. Jpn. J. Appl. Phys. 21(9), L545–L547 (1982)

    Article  Google Scholar 

  139. K.M. Kim, P. Smetana, Striations in CZ silicon crystals grown under various axial magnetic field strengths. J. Appl. Phys. 58(7), 2731–2734 (1985)

    Article  CAS  Google Scholar 

  140. D.T.J. Hurle, R.W. Series, Effective distribution coefficient in magnetic Czochralski growth. J. Cryst. Growth 73, 1–9 (1985)

    Article  CAS  Google Scholar 

  141. H. Fukui, K. Kakimoto, H. Ozoe, The convection under an axial magnetic field in a Czochralski configuration. Adv Comput Method Heat Transfer 27, 135–144 (1998)

    Google Scholar 

  142. T. Kimura et al., The effect of strong magnetic field on homogeneity in LEC GaAs single crystal. J. Cryst. Growth 79, 264–276 (1986)

    Article  CAS  Google Scholar 

  143. R.W. Series, Effects of a shaped magnetic field on Czochralski silicon growth. J. Cryst. Growth 97, 92–98 (1989)

    Article  CAS  Google Scholar 

  144. H. Hirata, K. Hoshikawa, Silicon crystal growth in a cusp magnetic field. J. Cryst. Growth 96, 745–755 (1989)

    Article  Google Scholar 

  145. J. Fukuda, T. Iwasaki, M. Tanaka, K. Kitahara, M. Hasebe, H. Harada, K. Nakai, Micro-fluctuation of growth rate and grow-in defect distribution in CZ-Si. Nippon Steel Technical Report 83, 2001, pp. 54–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Fautrelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fautrelle, Y., Wang, J., Du, D., Li, X., Ren, Z. (2018). High Magnetic Field Processing of Metal Alloys. In: Eskin, D., Mi, J. (eds) Solidification Processing of Metallic Alloys Under External Fields. Springer Series in Materials Science, vol 273. Springer, Cham. https://doi.org/10.1007/978-3-319-94842-3_6

Download citation

Publish with us

Policies and ethics