Skip to main content

Electromagnetic Stirring and Low-Frequency Electromagnetic Vibration

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 273))

Abstract

As the key parts of Electromagnetic Processing of Materials (EPM), electromagnetic stirring and low-frequency electromagnetic vibration processes have been developed to cause melt motion or vibration. In this chapter, we will firstly give a brief description of the physical principles of electromagnetic melt processing and solidification. Though partially repeating Chap. 3, it is still useful to recall them here. Next, the effects of electromagnetic stirring with a single set of induction coil and low-frequency electromagnetic vibration on heat/mass transfer and solidification structures are introduced. The last portion of this chapter deals with the casting technologies based on electromagnetic stirring and low-frequency electromagnetic vibration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.A. Shercliff, A Textbook of Magnetohydrodynamics (Pergamon Press, Oxford, 1965)

    Google Scholar 

  2. M. Zahn, Electromagnetic Field Theory: A Problems Solving Approach (Wiley, New York, 1979)

    Google Scholar 

  3. H. Zhang, H. Nagaumi, Y. Zuo, et al., Coupled modeling of electromagnetic field, fluid flow, heat transfer and solidification during low frequency electromagnetic casting of 7XXX aluminum alloys: part 1: development of a mathematical model and comparison with experimental results. Mater. Sci. Eng. A 448(1), 189–203 (2007)

    Google Scholar 

  4. F.H. Harlow, P.I. Nakayama, Transport of turbulence energy decay rate, Los Alamos Scientific Laboratory report LA-3854, 1968

    Google Scholar 

  5. G.H. Gulliver, The quantitative effect of rapid cooling upon the constitution of binary alloys. J. Inst. Met. 9, 120–157 (1913)

    Google Scholar 

  6. E. Scheil, Bemerkungen zur Schichtkristallbildung. Z. Metallkd. 34, 70–72 (1942)

    Google Scholar 

  7. S. Asai, I. Muchi, Theoretical analysis and model experiments on the formation mechanism of channel-type segregation. Trans. Iron Steel Inst. Jpn. 18, 90–98 (1978)

    CAS  Google Scholar 

  8. H.K. Moffatt, Electromagnetic stirring. Phys. Fluids A 3(5), 1336–1343 (1991)

    Article  Google Scholar 

  9. L.L. Tir, Features of mechanical energy transfer to a closed metal circuit in electromagnetic systems with azimuthal currents. Magnetohydrodynamics 12(2), 100–108 (1976)

    Google Scholar 

  10. V.A. Kompan et al., Magnetically controlled electroslag melting of titanium alloys. Modeling for Materials Processing, Riga, 2010, pp. 85–90

    Google Scholar 

  11. C. Vives, C. Perry, Effects of electromagnetic stirring during the controlled solidification of tin. Int. J. Heat Mass Transf. 29(1), 21–33 (1986)

    Article  CAS  Google Scholar 

  12. L. Hachani, B. Saadi, X.D. Wang, et al., Experimental analysis of the solidification of Sn–3 wt.% Pb alloy under natural convection. Int. J. Heat Mass Transf. 55(7), 1986–1996 (2012)

    Article  CAS  Google Scholar 

  13. S.F. Liu, L.Y. Liu, L.G. Kang, Refinement role of electromagnetic stirring and strontium in AZ91 magnesium alloy. J. Alloys Compd. 450(1), 546–550 (2008)

    Article  CAS  Google Scholar 

  14. H. Zhang, H. Nagaumi, J. Cui, Coupled modeling of electromagnetic field, fluid flow, heat transfer and solidification during low frequency electromagnetic casting of 7XXX aluminum alloys: part II: the effects of electromagnetic parameters on casting processes. Mater. Sci. Eng. A 448(1), 177–188 (2007)

    Article  Google Scholar 

  15. X. Wang, H. Zhang, Y. Zuo, et al., Experimental investigation of heat transport and solidification during low frequency electromagnetic hot-top casting of 6063 aluminum alloy. Mater. Sci. Eng. A 497(1-2), 416–420 (2008)

    Article  Google Scholar 

  16. A.N. Turchin, D.G. Eskin, L. Katgerman, Effect of melt flow on macro-and microstructure evolution during solidification of an Al–4.5% Cu alloy. Mater. Sci. Eng. A 413, 98–104 (2005)

    Article  Google Scholar 

  17. Y. Yamagishi, H. Takeuchi, A.T. Pyatenko, et al., Characteristics of microencapsulated PCM slurry as a heat–transfer fluid. AICHE J. 45(4), 696–707 (1999)

    Article  CAS  Google Scholar 

  18. J.L. Alvarado, C. Marsh, C. Sohn, et al., Thermal performance of microencapsulated phase change material slurry in turbulent flow under constant heat flux. Int. J. Heat Mass Transf. 50, 1938–1952 (2007)

    Article  Google Scholar 

  19. S. Wenji, X. Rui, H. Chong, et al., Experimental investigation on TBAB clathrate hydrate slurry flows in a horizontal tube: Forced convective heat transfer behaviors. Int. J. Refrig. 32(7), 1801–1807 (2009)

    Article  Google Scholar 

  20. G.M. Poole, N. El-Kaddah, An improved model for the flow in an electromagnetically stirred melt during solidification. Metall. Mater. Trans. B 44(6), 1531–1540 (2013)

    Article  CAS  Google Scholar 

  21. R. Nadella, D.G. Eskin, Q. Du, L. Katgerman, Macrosegregation in direct-chill casting of aluminium alloys. Prog. Mater. Sci. 53(3), 421–480 (2008)

    Article  CAS  Google Scholar 

  22. C.J. Vreeman, M.J.M. Krane, F.P. Incropera, The effect of free-floating dendrites and convection on macrosegregation in direct chill cast aluminum alloys: part I: model development. Int. J. Heat Mass Transf. 43(5), 677–686 (2000)

    Article  CAS  Google Scholar 

  23. S. Chang, D.M. Stefanescu, A model for macrosegregation and its application to Al-Cu castings. Metall. Mater. Trans. A 27(9), 2708–2721 (1996)

    Article  Google Scholar 

  24. P. Rousset, M. Rappaz, B. Hannart, Modeling of inverse segregation and porosity formation in directionally solidified aluminum alloys. Metall. Mater. Trans. A 26(9), 2349–2358 (1995)

    Article  Google Scholar 

  25. A.V. Reddy, N.C. Beckermann, Modeling of macrosegregation due to thermosolutal convection and contraction-driven flow in direct chill continuous casting of an Al-Cu round ingot. Metall. Mater. Trans. B 28(3), 479–489 (1997)

    Article  Google Scholar 

  26. S.N. Tewari, R. Shah, Macrosegregation during dendritic arrayed growth of hypoeutectic Pb-Sn alloys: Influence of primary arm spacing and mushy zone length. Metall. Mater. Trans. A 27(5), 1353–1362 (1996)

    Article  Google Scholar 

  27. H.J. Thevik, A. Mo, The influence of micro-scale solute diffusion and dendrite coarsening upon surface macrosegregation. Int. J. Heat Mass Transf. 40(9), 2055–2065 (1997)

    Article  CAS  Google Scholar 

  28. D.G. Eskin, R. Nadella, L. Katgerman, Effect of different grain structures on centerline macrosegregation during direct-chill casting. Acta Mater. 56(6), 1358–1365 (2008)

    Article  CAS  Google Scholar 

  29. B. Zhang, J. Cui, G. Lu, Effect of low-frequency magnetic field on macrosegregation of continuous casting aluminum alloys. Mater. Lett. 57(11), 1707–1711 (2003)

    Article  CAS  Google Scholar 

  30. C. Vives, Electromagnetic refining of aluminum alloys by the CREM process: part I. Working principle and metallurgical results. Metall. Trans. B 20(5), 623–629 (1989)

    Article  Google Scholar 

  31. T. Alboussiere, A.C. Neubrand, J.P. Garandet, et al., Segregation during horizontal Bridgman growth under an axial magnetic field. J. Cryst. Growth 181(1-2), 133–144 (1997)

    Article  CAS  Google Scholar 

  32. C.J. Vreeman, F.P. Incropera, The effect of free-floating dendrites and convection on macrosegregation in direct chill cast aluminum alloys: part II: predictions for Al–Cu and Al–Mg alloys. Int. J. Heat Mass Transf. 43(5), 687–704 (2000)

    Article  CAS  Google Scholar 

  33. J. Dong, Z. Zhao, J. Cui, et al., Effect of low-frequency electromagnetic casting on the castability, microstructure, and tensile properties of direct-chill cast Al-Zn-Mg-Cu alloy. Metall. Mater. Trans. A 35, 2487 (2004)

    Article  Google Scholar 

  34. D.D. Chen, H.T. Zhang, X.J. Wang, et al., Study on micro segregation of low frequency electromagnetic casting Al-4.5% Cu alloy. Acta Metall. Sin. 47(2), 185–190 (2011)

    CAS  Google Scholar 

  35. A. Hellawell, S. Liu, S.Z. Lu, Dendrite fragmentation and the effects of fluid flow in castings. JOM 49(3), 18–20 (1997)

    Article  CAS  Google Scholar 

  36. H. Hao, X.G. Zhang, J.P. Park, et al., Twin-strand technology and microstructure analysis for the electromagnetic near net-shape casting of aluminum alloy. J. Mater. Process. Technol. 142(2), 526–531 (2003)

    Article  CAS  Google Scholar 

  37. X. Li, Z. Guo, X. Zhao, et al., Continuous casting of copper tube billets under rotating electromagnetic field. Mater. Sci. Eng. A 460, 648–651 (2007)

    Article  Google Scholar 

  38. B. Zhang, J. Cui, G. Lu, Effects of low-frequency electromagnetic field on microstructures and macrosegregation of continuous casting 7075 aluminum alloy. Mater. Sci. Eng. A 355(1-2), 325–330 (2003)

    Article  Google Scholar 

  39. Y. Zuo, J. Cui, J. Dong, et al., Effects of low frequency electromagnetic field on the as-cast microstructures and mechanical properties of superhigh strength aluminum alloy. Mater. Sci. Eng. A 408(1), 176–181 (2005)

    Article  Google Scholar 

  40. Z. Zhao, J. Cui, J. Dong, et al., Effect of low-frequency magnetic field on microstructures of horizontal direct chill casting 2024 aluminum alloy. J. Alloys Compd. 396(1), 164–168 (2005)

    Article  CAS  Google Scholar 

  41. Z. Yan, X. Li, Z. Cao, et al., Grain refinement of horizontal continuous casting of the CuNi10Fe1Mn alloy hollow billets by rotating magnetic field (RMF). Mater. Lett. 62(28), 4389–4392 (2008)

    Article  CAS  Google Scholar 

  42. B. Willers, S. Eckert, U. Michel, et al., The columnar-to-equiaxed transition in Pb-Sn alloys affected by electromagnetically driven convection. Mater. Sci. Eng. A 402(1-2), 55–65 (2005)

    Article  Google Scholar 

  43. W.D. Griffiths, D.G. McCartney, The effect of electromagnetic stirring on macrostructure and macrosegregation in the aluminum alloy 7150. Mater. Sci. Eng. A 222(2), 140–148 (1997)

    Article  Google Scholar 

  44. Y. Zuo, J. Cui, Z. Zhao, H. Zhang, L. Li, Q. Zhu, Mechanism of grain refinement of an Al–Zn–Mg–Cu alloy prepared by low-frequency electromagnetic casting. J. Mater. Sci. 47, 5501–5508 (2012)

    Article  CAS  Google Scholar 

  45. J. Pilling, A. Hellawell, Mechanical deformation of dendrites by fluid flow. Metall. Mater. Trans. A 27(1), 229–232 (1996)

    Article  Google Scholar 

  46. R.H. Mathiesen, L. Arnberg, P. Bleuet, et al., Crystal fragmentation and columnar-to-equiaxed transitions in Al-Cu studied by synchrotron X-ray video microscopy. Metall. Mater. Trans. A 37(8), 2515–2524 (2006)

    Article  Google Scholar 

  47. D. Ruvalcaba, R.H. Mathiesen, D.G. Eskin, et al., In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidification of an aluminum alloy. Acta Mater. 55(13), 4287–4292 (2007)

    Article  CAS  Google Scholar 

  48. A.L. Greer, A.M. Bunn, A. Tronche, et al., Modelling of inoculation of metallic melts: application to grain refinement of aluminum by Al–Ti–B. Acta Mater. 48(11), 2823–2835 (2000)

    Article  CAS  Google Scholar 

  49. A. Ohno, Application of the Separation Theory. Solidification: The Separation Theory and its Practical Applications (Springer, Berlin, 1987), pp. 83–118

    Google Scholar 

  50. W.W. Mullins, R.F. Sekerka, Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34(2), 323–329 (1963)

    Article  CAS  Google Scholar 

  51. Q.F. Zhu, Z.H. Zhao, Y.B. Zuo, et al., The effect of the combination of electromagnetic field on the surface quality and inner structure of HDC casting Al 3004 ingot. J. Iron Steel Res. Int. 19, 322–326 (2012)

    Google Scholar 

  52. G.I. Eskin, D.G. Eskin, Ultrasonic Treatment of Light Alloy Melts, 2nd edn. (CRC Press, Boca Raton, 2015)

    Google Scholar 

  53. B.D. Goel, D.P. Shukla, P.C. Pandey, Effect of vibration during solidification on grain refinement in aluminum alloys. Trans. Indian Inst. Metals 33(3), 196–199 (1980)

    CAS  Google Scholar 

  54. J. Campbell, Effects of vibration during solidification. Int. Metals Rev. 26(1), 71–108 (1981)

    CAS  Google Scholar 

  55. O.V. Abramov, Ultrasound in Liquid and Solid Metals (CRC Press, Boca Raton, 1994)

    Google Scholar 

  56. D. Jarvis, V. Bojarevics, K. Pericleous et al., European Patent 13756442.3-1373, 2016

    Google Scholar 

  57. V. Bojarevics, G.S. Djambazov, K.A. Pericleous, Metall. Mater. Trans. A 46(7), 2884–2892 (2015)

    Article  CAS  Google Scholar 

  58. C. Vivès, Effects of forced electromagnetic vibrations during the solidification of aluminum alloys: part II. Solidification in the presence of colinear variable and stationary magnetic fields. Metall. Mater. Trans. B 27B(3), 457–464 (1996)

    Article  Google Scholar 

  59. C. Vivès, Effects of forced electromagnetic vibrations during the solidification of aluminum alloys: part I. Solidification in the presence of crossed alternating electric fields and stationary magnetic fields. Metall. Mater. Trans. B 27B(3), 445–455 (1996)

    Article  Google Scholar 

  60. H.J. Thevik, A. Mo, T. Rusten, A mathematical model for surface segregation in aluminum direct chill casting. Metall. Mater. Trans. B 30B(1), 135–142 (1999)

    Article  CAS  Google Scholar 

  61. A.K. Dahle, D.H. StJohn, Rheological behaviour of the mushy zone and its effect on the formation of casting defects during solidification. Acta Mater. 47(1), 31–41 (1998)

    Article  Google Scholar 

  62. D.G. Eskin, Suyitno, L. Katgerman, Mechanical properties in the semi-solid state and hot tearing of aluminum alloys. Prog. Mater. Sci. 49(5), 629–711 (2004)

    Google Scholar 

  63. D.G. Eskin, Suyitno, J.F. Mooney, L. Katgerman, Contraction of aluminum alloys during and after solidification. Metall. Mater. Trans. A 35A(4), 1325–1335 (2004)

    Article  CAS  Google Scholar 

  64. D. Jie, C. Jianzhong, D. Wenjiang, Theoretical discussion of the effect of a low-frequency electromagnetic vibrating field on the as-cast microstructures of DC Al–Zn–Mg–Cu–Zr ingots. J. Cryst. Growth 295(2), 179–187 (2006)

    Article  Google Scholar 

  65. Z.N. Getselev, G.A. Balakhontsev, F.I. Kvasov, G.V. Cherepok, I.I. Varga, G.I. Martynov, Continuous Casting in Electromagnetic Mold (Metallurgiya, Moscow, 1983)

    Google Scholar 

  66. J. Dong, J. Cui, X. Zeng, et al., Effect of low-frequency electromagnetic field on microstructures and macrosegregation of Φ270 mm DC ingots of an Al–Zn–Mg–Cu–Zr alloy. Mater. Lett. 59(12), 1502–1506 (2005)

    Article  CAS  Google Scholar 

  67. Z. Yubo, C. Jianzhong, Z. Zhihao, et al., Effect of low frequency electromagnetic field on casting crack during DC casting superhigh strength aluminum alloy ingots. Mater. Sci. Eng. A 406(1), 286–292 (2005)

    Article  Google Scholar 

  68. Z.H. Zhao, Study on the Technology and Theory of Horizontal Direct Chill Casting Process of Light Alloys Under Low-Frequency Electromagnetic Field (Northeastern University, Shenyang, 2005)

    Google Scholar 

  69. J.Z. Cui, Z.F. Wang, Z.H. Zhao, Method and apparatus for DC casting of hollow billets under electromagnetic fields: China, ZL200510046854.4, 2005 (in Chinese)

    Google Scholar 

  70. J.Z. Cui, K. Qin, F.X. Yu, Method and apparatus for electromagnetic modifying of hypereutectic Al-Si alloys: China, ZL2004410087637.5, 2004 (in Chinese)

    Google Scholar 

  71. J.Z. Cui, F. Qu, Z.H. Zhao, Method and apparatus for air film casting under static magnetic field: China, ZL20081001257.4, 2008 (in Chinese)

    Google Scholar 

  72. H. Zhang, J. Cui, H. Nagaumi, A New Approach to Producing Large-Size AA7055 Aluminum Alloy Ingots, Light Metals 2012 (TMS/Springer, New York, 2012), pp. 333–337

    Google Scholar 

  73. Z. Zhang, Q. Le, J. Cui, Structure and mechanical properties of AZ31 magnesium alloy billets by different hot-top semi-continuous casting technology. J. Rare Metals 30, 414 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cui, J., Zhang, H., Li, L., Zuo, Y., Nagaumi, H. (2018). Electromagnetic Stirring and Low-Frequency Electromagnetic Vibration. In: Eskin, D., Mi, J. (eds) Solidification Processing of Metallic Alloys Under External Fields. Springer Series in Materials Science, vol 273. Springer, Cham. https://doi.org/10.1007/978-3-319-94842-3_4

Download citation

Publish with us

Policies and ethics