Skip to main content

Reconstruction of Boolean Formulas in Conjunctive Normal Form

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10976))

Included in the following conference series:

  • 1371 Accesses

Abstract

A long-standing open problem in graph theory is to prove or disprove the graph reconstruction conjecture proposed by Kelly and Ulam in the 1940s. This conjecture roughly states that every graph on at least three vertices is uniquely determined by its vertex-deleted subgraphs. We adapt the idea of reconstruction for Boolean formulas in conjunctive normal form (CNFs) and formulate the reconstruction conjecture for CNFs: every CNF with at least four clauses is uniquely determined by its clause-deleted subformulas. Our main results can be summarized as follows. First, we prove that our conjecture is equivalent to a well-studied variation of the graph reconstruction conjecture, namely, the edge-reconstruction conjecture for hypergraphs. Second, we prove that the number of satisfying assignments of a CNF is reconstructible, i.e., this number can be computed from the clause-deleted subformulas. Third, we show that every CNF with m clauses over n variables is reconstructible if \(2^{m-1} > 2^n \cdot n!\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alon, N., Caro, Y., Krasikov, I., Roditty, Y.: Combinatorial reconstruction problems. J. Comb. Theory Ser. B 47(2), 153–161 (1989)

    Article  MathSciNet  Google Scholar 

  2. Alekhnovich, M., Razborov, A.: Satisfiability, branch-width and tseitin tautologies. Comput. Complex. 20(4), 649–678 (2011)

    Article  MathSciNet  Google Scholar 

  3. Berge, C.: Isomorphism problems for hypergraphs. In: Berge, C., Ray-Chaudhuri, D. (eds.) Hypergraph Seminar. LNM, vol. 411, pp. 1–12. Springer, Heidelberg (1974). https://doi.org/10.1007/BFb0066174

    Chapter  Google Scholar 

  4. Bollobás, B.: Almost every graph has reconstruction number three. J. Graph Theory 14(1), 1–4 (1990)

    Article  MathSciNet  Google Scholar 

  5. Greenwell, D.L.: Reconstructing graphs. Proc. Am. Math. Soc. 30(3), 431–433 (1971)

    Article  MathSciNet  Google Scholar 

  6. Harary, F.: On the reconstruction of a graph from a collection of subgraphs. In: Theory of Graphs and Its Applications, pp. 47–52 (1964)

    Google Scholar 

  7. Kelly, P.J.: A congruence theorem for trees. Pac. J. Math. 7(1), 961–968 (1957)

    Article  MathSciNet  Google Scholar 

  8. Kocay, W.L.: A family of nonreconstructible hypergraphs. J. Comb. Theory Ser. B 42(1), 46–63 (1987)

    Article  MathSciNet  Google Scholar 

  9. Lovász, L.: A note on the line reconstruction problem. J. Comb. Theory Ser. B 13, 309–310 (1972)

    Article  MathSciNet  Google Scholar 

  10. Lauri, J., Scapellato, R.: Topics in Graph Automorphisms and Reconstruction. London Mathematical Society Lecture Note Series, 2nd edn. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  11. McKay, B.D.: Small graphs are reconstructible. Aust. J. Comb. 15, 123–126 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Müller, V.: Probabilistic reconstruction from subgraphs. Commentationes Mathematicae Universitatis Carolinae 17(4), 709–719 (1976)

    MathSciNet  MATH  Google Scholar 

  13. Nash-Williams, C.: The reconstruction problem. In: Selected Topics in Graph Theory, chap. 8, pp. 205–235. Academic Press (1978)

    Google Scholar 

  14. Samer, M., Szeider, S.: Fixed-parameter tractability. In: Handbook of Satisfiability, chap. 13, pp. 425–456. IOS Press (2009)

    Google Scholar 

  15. Stockmeyer, P.K.: The falsity of the reconstruction conjecture for tournaments. J. Graph Theory 1(1), 19–25 (1977)

    Article  MathSciNet  Google Scholar 

  16. Tadesse, Y.: Using edge-induced and vertex-induced subhypergraph polynomials. Mathematica Scandinavica 117(3), 161–169 (2015)

    Article  MathSciNet  Google Scholar 

  17. Ulam, S.: A Collection of Mathematical Problems. Interscience Tracts in Pure and Applied Mathematics, vol. 8. Wiley, New York (1960)

    MATH  Google Scholar 

  18. White, J.: On multivariate chromatic polynomials of hypergraphs and hyperedge elimination. Electron. J. Comb. 18(1), #P160 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Dantsin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dantsin, E., Wolpert, A. (2018). Reconstruction of Boolean Formulas in Conjunctive Normal Form. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94776-1_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94775-4

  • Online ISBN: 978-3-319-94776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics