Skip to main content

Smooth Goodness of Fit Tests

  • Chapter
  • First Online:
A Parametric Approach to Nonparametric Statistics

Part of the book series: Springer Series in the Data Sciences ((SSDS))

  • 1837 Accesses

Abstract

Goodness of fit problems have had a long history dating back to PearsonĀ (1900). Such problems are concerned with testing whether or not a set of observed data emanate from a specified distribution. For example, suppose we would like to test the hypothesis that a set of n observations come from a standard normal distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins, L. and Fligner, M. (1998). A non-iterative procedure for maximum likelihood estimation of the parameters of Mallowsā€™ model based on partial rankings. Communications in Statistics: Theory and Methods, 27(9):2199ā€“2220.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Alvo, M. and Cabilio, P. (2000). Calculation of hypergeometric probabilities using Chebyshev polynomials. The American Statistician, 54:141ā€“144.

    Google ScholarĀ 

  • Alvo, M. and Yu, P. L.Ā H. (2014). Statistical Methods for Ranking Data. Springer.

    BookĀ  Google ScholarĀ 

  • Asmussen, S., Jensen, J., and Rojas-Nandayapa, L. (2016). Exponential family techniques for the lognormal left tail. Scandinavian Journal of Statistics, 43:774ā€“787.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Beckett, L.Ā A. (1993). Maximum likelihood estimation in Mallowsā€™ model using partially ranked data. In Fligner, M.Ā A. and Verducci, J.Ā S., editors, Probability Models and Statistical Analyses for Ranking Data, pagesĀ 92ā€“108. Springer-Verlag.

    Google ScholarĀ 

  • Busse, L.Ā M., Orbanz, P., and Buhmann, J.Ā M. (2007). Cluster analysis of heterogeneous rank data. In Proceedings of the 24th International Conference on Machine Learning, pagesĀ 113ā€“120.

    Google ScholarĀ 

  • Critchlow, D. (1985). Metric Methods for Analyzing Partially Ranked Data. Springer-Verlag: New York.

    BookĀ  Google ScholarĀ 

  • Critchlow, D. and Verducci, J. (1992). Detecting a trend in paired rankings. Applied Statistics, 41:17ā€“29.

    ArticleĀ  Google ScholarĀ 

  • Critchlow, D.Ā E., Fligner, M.Ā A., and Verducci, J.Ā S. (1991). Probability models on rankings. Journal of Mathematical Psychology, 35:294ā€“318.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Diaconis, P. (1988a). Group Representations in Probability and Statistics. Institute of Mathematical Statistics, Hayward.

    Google ScholarĀ 

  • Efron, B. (1981). Nonparametric standard errors and confidence intervals. The Canadian Journal of Statistics, 9(2):139ā€“158.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Feigin, P.Ā D. (1993). Modelling and analysing paired ranking data. In Fligner, M.Ā A. and Verducci, J.Ā S., editors, Probability Models and Statistical Analyses for Ranking Data, pagesĀ 75ā€“91. Springer-Verlag.

    Google ScholarĀ 

  • Feller, W. (1968). An Introduction to Probability Theory and Its Applications, volumeĀ I. John Wiley & Sons, Inc, New York, third edition.

    Google ScholarĀ 

  • Fligner, M.Ā A. and Verducci, J.Ā S. (1986). Distance based ranking models. Journal of the Royal Statistical Society Series B, 48(3):359ā€“369.

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Kendall, M. and Stuart, A. (1979). The Advanced Theory of Statistics, volumeĀ 2. Griffin, London, fourth edition.

    Google ScholarĀ 

  • Lancaster, H. (1953). A reconciliation of chi square from metrical and enumerative aspects. Sankhya, 13:1ā€“10.

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Lee, P.Ā H. and Yu, P. L.Ā H. (2012). Mixtures of weighted distance-based models for ranking data with applications in political studies. Computational Statistics and Data Analysis, 56:2486ā€“2500.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Mallows, C.Ā L. (1957). Non-null ranking models. I. Biometrika, 44:114ā€“130.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Marden, J.Ā I. (1995). Analyzing and Modeling Rank Data. Chapman Hall, New York.

    MATHĀ  Google ScholarĀ 

  • Neyman, J. (1937). Smooth test for goodness of fit. Skandinavisk Aktuarietidskrift, 20:149ā€“199.

    MATHĀ  Google ScholarĀ 

  • Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine, pagesĀ 157ā€“175.

    ArticleĀ  Google ScholarĀ 

  • Qian, Z. and Yu, P. L.Ā H. (2018). Weighted distance-based models for ranking data using the r package rankdist. Journal of Statistical Software, page Forthcoming.

    Google ScholarĀ 

  • Ralston, A. (1965). A First Course in Numerical Analysis. McGraw Hill, New York.

    MATHĀ  Google ScholarĀ 

  • Rayner, J. C.Ā W., Best, D.Ā J., and Thas, O. (2009a). Generalised smooth tests of goodness of fit. Journal of Statistical Theory and Practice, pagesĀ 665ā€“679.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Rayner, J. C.Ā W., Thas, O., and Best, D.Ā J. (2009b). Smooth Tests of Goodness of Fit Using R. John Wiley and Sons, 2nd edition.

    Google ScholarĀ 

  • Serfling, Robert, J. (2009). Approximating Theorems of Mathematical Statistics. John Wiley and Sons.

    Google ScholarĀ 

  • Siegmund, D. (1976). Importance sampling in the Monte Carlo study of sequential tests. The Annals of Statistics, 4(4):673ā€“684.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Yu, P. L.Ā H. and Xu, H. (2018). Rank aggregation using latent-scale distance-based models. Statistics and Computing, page Forthcoming.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alvo, M., Yu, P.L.H. (2018). Smooth Goodness of Fit Tests. In: A Parametric Approach to Nonparametric Statistics. Springer Series in the Data Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-94153-0_4

Download citation

Publish with us

Policies and ethics