Skip to main content

Cell Surface Engineering

  • Living reference work entry
  • First Online:
Book cover Functional Biopolymers

Abstract

Recent preclinical studies demonstrated the use of engineered cells as a potential way to treat many diseases and disorders. Tailoring the cell’s function and interactions using surface engineering methods is a very promising approach in developing novel cell-based therapeutics. For instance, cell surface modification has been used for the development of universal blood donor cells. In another example, it has been shown that surface modification of stem cells is a doable approach to regulate the fate of cells into specific phenotypes, which is necessary to regain function in specific environment such as different injury sites. Cell surface engineering using macromolecules/polymers could provide desired properties and functions to cells for applications in targeted delivery, biosensing, transfection, imaging techniques, and in the regulation of cell fate. This chapter will review the recent advancements in polymer-based cell surface engineering approaches for various applications. In terms of the cell types, we have chosen to focus, specifically, on red blood cells, lymphocytes, splenocytes, stem cells (multipotent and pluripotent), islet cells, endothelial cells, and hepatocytes as they offer the most promise in generating cell-based therapeutics. In terms of modification approaches, we mainly highlighted the literature associated with the use synthetic polymers via covalent conjugation and non-covalent bonding. We also discuss the future of such cell surface engineering methods for their potential clinical utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AL:

Alginate

BAEC:

Bovine aortic endothelial cells

BNHS:

Biotin N-hydroxysuccinimidyl

CAM:

Cell adhesion molecules

CH-PC:

Chitosan-graft-phosphorylcholine

CNS:

Central nervous system

CP:

Choline phosphate

DMPE:

1,2-Dimyristoyl-sn-glycerol-3-phosphatidylethanolamine

EC:

Endothelial cells

ECM:

Extracellular matrix

ESCs:

Embryonic stem cells

FGF2:

Fibroblast growth factor 2

GAGs:

Glycosaminoglycans

HPGs:

Hyperbranched polyglycerols

HS:

Heparan sulfate

HSCs:

Hematopoietic stem cells

HTPs:

HaloTag proteins

ICAM-1:

Intercellular cell adhesion molecule-1

IPSC:

Induced pluripotent stem cells

LbL:

Layer-by-layer

Mal-Phe-PEG:

Maleimidophenyl-PEG

m-PEG:

Methoxypoly(ethylene glycol)

MSC:

Mesenchymal stem cell

neoPGs:

Neoproteoglycans

NHS:

N-hydroxysuccinimidyl

NSCs:

Neural stem cells

PBS:

Phosphate-buffered saline

PEG:

Poly(ethylene glycol)

PEI:

Poly(ethyleneimine)

PEM:

Polyelectrolyte multilayer film

PLL:

Poly-l-lysine

PLL-PEG:

Poly-l-lysine-graft-polyethylene glycol

PMNs:

Polymorphonuclear leukocytes

PPG:

Palmitated protein G

PSCs:

Pluripotent stem cells

PVA:

Poly(vinyl alcohol)

RBCs:

Red blood cells

SDF-1:

Stromal-derived factor-1

SLeX:

Sialyl-Lewisx

SS:

Succinimidyl succinate

VCAM:

Vascular endothelial adhesion molecule

References

  1. J. Spatz, Molecular engineering of cellular environments: cell adhesion to nano-digital surfaces. Tissue Eng. 13(4), 877–878 (2007)

    Google Scholar 

  2. D. Falconnet, G. Csucs, H.M. Grandin, M. Textor, Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27(16), 3044–3063 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. L. Lu, J. Gao, Z. Guo, Labeling cell surface gpis and GPI-anchored proteins through metabolic engineering with artificial inositol derivatives. Angew. Chem. Int. Ed. 54(33), 9679–9682 (2015)

    Article  CAS  Google Scholar 

  4. M.E. Medof, S. Nagarajan, M.L. Tykocinski, Cell-surface engineering with GPI-anchored proteins. FASEB J. 10(5), 574–586 (1996)

    Article  CAS  PubMed  Google Scholar 

  5. E. Saxon, C.R. Bertozzi, Chemical and biological strategies for engineering cell surface glycosylation. Annu. Rev. Cell Dev. Biol. 17, 1–23 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. W.A. Zhao, G.S.L. Teo, N. Kumar, J.M. Karp, Chemistry and material science at the cell surface. Mater. Today 13(4), 14–21 (2010)

    Article  CAS  Google Scholar 

  7. M.D. Mager, V. LaPointe, M.M. Stevens, Exploring and exploiting chemistry at the cell surface. Nat. Chem. 3(8), 582–589 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. M.M. Stevens, J.H. George, Exploring and engineering the cell surface interface. Science 310(5751), 1135–1138 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. B. Wang, P. Liu, R. Tang, Cellular shellization: surface engineering gives cells an exterior. BioEssays 32(8), 698–708 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. Y. Teramura, H. Chen, T. Kawamoto, H. Iwata, Control of cell attachment through polyDNA hybridization. Biomaterials 31(8), 2229–2235 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. B. Wang, J. Song, H. Yuan, C. Nie, F. Lv, L. Liu, S. Wang, Multicellular assembly and light-regulation of cell-cell communication by conjugated polymer materials. Adv. Mater. 26(15), 2371–2375 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. R. Chapanian, I. Constantinescu, D.E. Brooks, M.D. Scott, J.N. Kizhakkedathu, In vivo circulation, clearance, and biodistribution of polyglycerol grafted functional red blood cells. Biomaterials 33(10), 3047–3057 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. R. Chapanian, I. Constantinescu, N. Medvedev, M.D. Scott, D.E. Brooks, J.N. Kizhakkedathu, Therapeutic cells via functional modification: influence of molecular properties of polymer grafts on in vivo circulation, clearance, immunogenicity, and antigen protection. Biomacromolecules 14(6), 2052–2062 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. Y. Teramura, H. Iwata, Cell surface modification with polymers for biomedical studies. Soft Matter 6(6), 1081–1091 (2010)

    Article  CAS  Google Scholar 

  15. Y. Teramura, S. Asif, K.N. Ekdahl, B. Nilsson, Cell surface engineering for regulation of immune reactions in cell therapy. Adv. Exp. Med. Biol. 865, 189–209 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. J.H. Jeong, J.J. Schmid, R.E. Kohman, A.T. Zill, R.J. DeVolder, C.E. Smith, M.-H. Lai, A. Shkumatov, T.W. Jensen, L.G. Schook, S.C. Zimmerman, H. Kong, Leukocyte-mimicking stem cell delivery via in situ coating of cells with a bioactive hyperbranched polyglycerol. J. Am. Chem. Soc. 135, 8770–8773 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. B. Kellam, P.A. De Bank, K.M. Shakesheff, Chemical modification of mammalian cell surfaces. Chem. Soc. Rev. 32(6), 327 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. J.C. Kim, G. Tae, Recent advances in cell surface engineering focused on cell therapy. Bull. Kor. Chem. Soc. 36(1), 59–65 (2015)

    Article  CAS  Google Scholar 

  19. J. Robertus, W.R. Browne, B.L. Feringa, Dynamic control over cell adhesive properties using molecular-based surface engineering strategies. Chem. Soc. Rev. 39(1), 354–378 (2010)

    Article  CAS  PubMed  Google Scholar 

  20. L.K. Mahal, K.J. Yarema, C.R. Bertozzi, Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276(5315), 1125–1128 (1997)

    Article  CAS  PubMed  Google Scholar 

  21. Y.W. Won, A.N. Patel, D.A. Bull, Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient. Biomaterials 35(21), 5627–5635 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. J.T. Wilson, W.X. Cui, V. Kozovskaya, E. Kharlampieva, D. Pan, Z. Qu, V.R. Krishnamurthy, J. Mets, V. Kumar, J. Wen, Y.H. Song, V.V. Tsukruk, E.L. Chaikof, Cell surface engineering with polyelectrolyte multilayer thin films. J. Am. Chem. Soc. 133(18), 7054–7064 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. S. Miura, Y. Teramura, H. Iwata, Encapsulation of islets with ultra-thin polyion complex membrane through poly(ethylene glycol)-phospholipids anchored to cell membrane. Biomaterials 27(34), 5828–5835 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. Y. Teramura, H. Iwata, Islets surface modification prevents blood-mediated inflammatory responses. Bioconjug. Chem. 19(7), 1389–1395 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. K. Tatsumi, K. Ohashi, Y. Teramura, R. Utoh, K. Kanegae, N. Watanabe, S. Mukobata, M. Nakayama, H. Iwata, T. Okano, The non-invasive cell surface modification of hepatocytes with PEG-lipid derivatives. Biomaterials 33(3), 821–828 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. Y. Teramura, Y. Kaneda, H. Iwata, Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)-lipids in the cell membrane. Biomaterials 28(32), 4818–4825 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. T. Totani, Y. Teramura, H. Iwata, Immobilization of urokinase on the islet surface by amphiphilic poly(vinyl alcohol) that carries alkyl side chains. Biomaterials 29(19), 2878–2883 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. Y. Teramura, H. Iwata, Islet encapsulation with living cells for improvement of biocompatibility. Biomaterials 30(12), 2270–2275 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. Y. Teramura, Cell surface modification with ssDNA-PEG-lipid for analysing intercellular interactions between different cells. Biomaterials 48, 119–128 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. T. Matsui, Y. Arima, N. Takemoto, H. Lwata, Cell patterning on polylactic acid through surface-tethered oligonucleotides. Acta Biomater. 13, 32–41 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. V. Gribova, R. Auzely-Velty, C. Picart, Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering. Chem. Mater. 24(5), 854–869 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. C. Boura, P. Menu, E. Payan, C. Picart, J.C. Voegel, S. Muller, J.F. Stoltz, Endothelial cells grown on thin polyelectrolyte multilayered films: an evaluation of a new versatile surface modification. Biomaterials 24(20), 3521–3530 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. P. Tryoen-Toth, D. Vautier, Y. Haikel, J.C. Voegel, P. Schaaf, J. Chluba, J. Ogier, Viability, adhesion, and bone phenotype of osteoblast-like cells on polyelectrolyte multilayer films. J. Biomed. Mater. Res. 60(4), 657–667 (2002)

    Article  CAS  PubMed  Google Scholar 

  34. L. Richert, F. Boulmedais, P. Lavalle, J. Mutterer, E. Ferreux, G. Decher, P. Schaaf, J.C. Voegel, C. Picart, Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking. Biomacromolecules 5(2), 284–294 (2004)

    Article  CAS  PubMed  Google Scholar 

  35. X.F. Yu, Z.H. Liu, J. Janzen, I. Chafeeva, S. Horte, W. Chen, R.K. Kainthan, J.N. Kizhakkedathu, D.E. Brooks, Polyvalent choline phosphate as a universal biomembrane adhesive. Nat. Mater. 11(5), 468–476 (2012)

    Article  CAS  PubMed  Google Scholar 

  36. S. Mansouri, Y. Merhi, F.M. Winnik, M. Tabrizian, Investigation of layer-by-layer assembly of polyelectrolytes on fully functional human red blood cells in suspension for attenuated immune response. Biomacromolecules 12(3), 585–592 (2011)

    Article  CAS  PubMed  Google Scholar 

  37. a) J.T. Wilson, C.A. Haller, Z. Qu, W. Cui, M.K. Urlam, E.L. Chaikof, Biomolecular surface engineering of pancreatic islets with thrombomodulin. Acta Biomater. 6(6), 1895–1903 (2010). b) R. Chapanian, I. Constantinescu, N.A.A. Rossi, N. Medvedev, D.E. Brooks, M.D. Scott, J.N. Kizhakkedathu, Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells. Biomaterials 33(31), 7871–7883 (2012)

    Google Scholar 

  38. S.C. Hsiao, B.J. Shum, H. Onoe, E.S. Douglas, Z.J. Gartner, R.A. Mathies, C.R. Bertozzi, M.B. Francis, Direct cell surface modification with DNA for the capture of primary cells and the investigation of myotube formation on defined patterns. Langmuir 25(12), 6985–6991 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. H. Cheng, M. Byrska-Bishop, C.T. Zhang, C.J. Kastrup, N.S. Hwang, A.K. Tai, W.W. Lee, X.Y. Xu, M. Nahrendorf, R. Langer, D.G. Anderson, Stem cell membrane engineering for cell rolling using peptide conjugation and tuning of cell-selectin interaction kinetics. Biomaterials 33(20), 5004–5012 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. A.M. Chen, M.D. Scott, Immunocamouflage: prevention of transfusion-induced graft-versus-host disease via polymer grafting of donor cells. J Biomed Mater Res Part A 67A(2), 626–636 (2003)

    Article  CAS  Google Scholar 

  41. S. Hashemi-Najafabadi, E. Vasheghani-Farahani, S.A. Shojaosadati, M.J. Rasaee, J.K. Armstrong, M. Moin, Z. Pourpak, A method to optimize peg-coating of red blood cells. Bioconjug. Chem. 17(5), 1288–1293 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. Y.-M. Wee, D.-G. Lim, Y.-H. Kim, J.-H. Kim, S.-C. Kim, E. Yu, M.-O. Park, M.Y. Choi, Y.-H. Park, H.-J. Jang, E.-Y. Cho, M.-H. Cho, D.-J. Han, Cell surface modification by activated polyethylene glycol prevents allosensitization after islet transplantation. Cell Transplant. 17(10–11), 1257–1269 (2008)

    Article  PubMed  Google Scholar 

  43. D.P. Blackall, J.K. Armstrong, H.J. Meiselman, T.C. Fisher, Polyethylene glycol–coated red blood cells fail to bind glycophorin A–specific antibodies and are impervious to invasion by the Plasmodium falciparum malaria parasite. Blood 97(2), 551–556 (2001)

    Article  CAS  PubMed  Google Scholar 

  44. A.M. Chen, M.D. Scott, Current and future applications of immunological attenuation via pegylation of cells and tissue. BioDrugs 15, 833–847 (2001)

    Article  CAS  PubMed  Google Scholar 

  45. D. Yun Lee, J. Hee Nam, Y. Byun, Functional and histological evaluation of transplanted pancreatic islets immunoprotected by PEGylation and cyclosporine for 1 year. Biomaterials 28(11), 1957–1966 (2007)

    Article  PubMed  CAS  Google Scholar 

  46. a) M.D. Scott, K.L. Murad, F. Koumpouras, M. Talbot, J.W. Eaton, Chemical camouflage of antigenic determinants: stealth erythrocytes. Proc. Natl. Acad. Sci. U.S.A. 94(14), 7566–7571 (1997). b) A.J. Bradleya, K.L. Murada, K.L. Regana, M.D. Scott, Biophysical consequences of linker chemistry and polymer size on stealth erythrocytes: size does matter. Biochim. Biophys. Acta 1561(2), 147–158 (2002)

    Google Scholar 

  47. J. Chen, G.H. Altman, V. Karageorgiou, R. Horan, A. Collette, V. Volloch, T. Colabro, D.L. Kaplan, Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J. Biomed. Mat. Res 67A(2), 560–570 (2003)

    Google Scholar 

  48. H. Chen, J. Rhodes, Schiff base forming drugs: mechanisms of immune potentiation and therapeutic potential. J. Mol. Med. 74(9), 497–504 (1996)

    Article  CAS  PubMed  Google Scholar 

  49. J. Rhodes, H. Chen, S.R. Hall, J.E. Beesley, D.C. Jenkins, P. Collins, B. Zheng, Therapeutic potentiation of the immune system by costimulatory Schiff-base-forming drugs. Nature 377(6544), 71–75 (1995)

    Article  CAS  PubMed  Google Scholar 

  50. Y. Yuan, X.J. Wang, B. Mei, D.X. Zhang, A.M. Tang, L.N. An, X.X. He, J. Jiang, G.L. Liang, Labeling thiols on proteins, living cells, and tissues with enhanced emission induced by FRET. Sci. Rep-Uk. 3, 3523 (2013)

    Article  Google Scholar 

  51. A.G. Torres, M.J. Gait, Exploiting cell surface thiols to enhance cellular uptake. Trends Biotechnol. 30(4), 185–190 (2012)

    Article  CAS  PubMed  Google Scholar 

  52. M.M. Fretz, N.A. Penning, S. Al-Taei, S. Futaki, T. Takeuchi, I. Nakase, G. Storm, A.T. Jones, Temperature-, concentration- and cholesterol-dependent translocation of l- and d-octa-arginine across the plasma and nuclear membrane of CD34(+) leukaemia cells. Biochem. J. 403, 335–342 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. K. Tyagarajan, E. Pretzer, J.E. Wiktorowicz, Thiol-reactive dyes for fluorescence labeling of proteomic samples. Electrophoresis 24(14), 2348–2358 (2003)

    Article  CAS  PubMed  Google Scholar 

  54. B. Sahaf, K. Heydari, L.A. Herzenberg, L.A. Herzenberg, Lymphocyte surface thiol levels. Proc. Natl. Acad. Sci. U. S. A. 100(7), 4001–4005 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. M.T. Stephan, J.J. Moon, S.H. Um, A. Bershteyn, D.J. Irvine, Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16(9), 1035–U135 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. P. Nacharaju, F.N. Boctor, B.N. Manjula, S.A. Acharya, Surface decoration of red blood cells with maleimidophenyl-polyethylene glycol facilitated by thiolation with iminothiolane: an approach to mask A, B, and D antigens to generate universal red blood cells. Transfusion 45(3), 374–383 (2005)

    Article  CAS  PubMed  Google Scholar 

  57. B.K. Kay, S. Thai, V.V. Volgina, High-throughput biotinylation of proteins, in High Throughput Protein Expression and Purification: Methods and Protocols, ed. by S.A. Doyle (Humana Press, Totowa, 2009), pp. 185–198

    Google Scholar 

  58. M. González, L.A. Bagatolli, I. Echabe, J.L.R. Arrondo, C.E. Argaraña, C.R. Cantor, G.D. Fidelio, Interaction of biotin with streptavidin: thermostability and conformational changes upon binding. J. Biol. Chem. 272(17), 11288–11294 (1997)

    Article  PubMed  Google Scholar 

  59. O. Livnah, E.A. Bayer, M. Wilchek, J.L. Sussman, Three-dimensional structures of avidin and the avidin-biotin complex. Proc. Natl. Acad. Sci. U. S. A. 90(11), 5076–5080 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Z. Ding, R.B. Fong, C.J. Long, P.S. Stayton, A.S. Hoffman, Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411(6833), 59–62 (2001)

    Article  CAS  PubMed  Google Scholar 

  61. S.H. Yang, S.M. Kang, K.-B. Lee, T.D. Chung, H. Lee, I.S. Choi, Mussel-inspired encapsulation and functionalization of individual yeast cells. J. Am. Chem. Soc. 133(9), 2795–2797 (2011)

    Article  CAS  PubMed  Google Scholar 

  62. X.Q. Dou, J. Zhang, C. Feng, Biotin-avidin based universal cell-matrix interaction for promoting three-dimensional cell adhesion. ACS Appl. Mater. Interfaces 7(37), 20786–20792 (2015)

    Article  CAS  PubMed  Google Scholar 

  63. R. Chapanian, I. Constantinescu, D.E. Brooks, M.D. Scott, J. Kizhakkedathu, Antigens protected functional red blood cells by the membrane grafting of compact hyperbranched polyglycerols. Jove-J. Vis. Exp. (71), e50075. https://doi.org/10.3791/50075 (2013)

  64. I.M. Brockman, K.L.J. Prather, Dynamic metabolic engineering: new strategies for developing responsive cell factories. Biotechnol. J. 10(9), 1360–1369 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. C.M. Cole, J. Yang, J. Šečkutė, N.K. Devaraj, Fluorescent live-cell imaging of metabolically incorporated unnatural cyclopropene-mannosamine derivatives. ChemBioChem 14(2), 205–208 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. B.D. Ratner, The engineering of biomaterials exhibiting recognition and specificity. J. Mol. Recognit. 9(5–6), 617–625 (1996)

    Article  CAS  PubMed  Google Scholar 

  67. S.-G. Sampathkumar, M.B. Jones, K.J. Yarema, Metabolic expression of thiol-derivatized sialic acids on the cell surface and their quantitative estimation by flow cytometry. Nat. Protoc. 1(4), 1840–1851 (2006)

    Article  CAS  PubMed  Google Scholar 

  68. C.T. Campbell, S.-G. Sampathkumar, K.J. Yarema, Metabolic oligosaccharide engineering: perspectives, applications, and future directions. Mol. Biosyst. 3(3), 187–194 (2007)

    Article  CAS  PubMed  Google Scholar 

  69. D.H. Dube, C.R. Bertozzi, Metabolic oligosaccharide engineering as a tool for glycobiology. Curr. Opin. Chem. Biol. 7(5), 616–625 (2003)

    Article  CAS  PubMed  Google Scholar 

  70. K.J. Yarema, L.K. Mahal, R.E. Bruehl, E.C. Rodriguez, C.R. Bertozzi, Metabolic delivery of ketone groups to sialic acid residues: application to cell surface glycoform engineering. J. Biol. Chem. 273(47), 31168–31179 (1998)

    Article  CAS  PubMed  Google Scholar 

  71. Y. Iwasaki, M. Sakiyama, S. Fujii, S.-I. Yusa, Surface modification of mammalian cells with stimuli-responsive polymers. Chem. Commun. 49(71), 7824–7826 (2013)

    Article  CAS  Google Scholar 

  72. B. Wang, J. Brand-Miller, The role and potential of sialic acid in human nutrition. Eur. J. Clin. Nutr. 57(11), 1351–1369 (2003)

    Article  CAS  PubMed  Google Scholar 

  73. C.G. Gahmberg, M. Tolvanen, [3] Nonmetabolic radiolabeling and tagging of glycoconjugates. Methods Enzymol. 230, 32–44 (1994)

    Article  CAS  PubMed  Google Scholar 

  74. M. Tolvanen, C.G. Gahmberg, In vitro attachment of mono- and oligosaccharides to surface glycoconjugates of intact cells. J. Biol. Chem. 261(20), 9546–9551 (1986)

    CAS  PubMed  Google Scholar 

  75. P.A. De Bank, B. Kellam, D.A. Kendall, K.M. Shakesheff, Surface engineering of living myoblasts via selective periodate oxidation. Biotechnol. Bioeng. 81(7), 800–808 (2003)

    Article  PubMed  CAS  Google Scholar 

  76. C.A. Holden, Q. Yuan, W.A. Yeudall, D.A. Lebman, H. Yang, Surface engineering of macrophages with nanoparticles to generate a cell–nanoparticle hybrid vehicle for hypoxia-targeted drug delivery. Int. J. Nanomedicine 5, 25–36 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. D.J. Moloney, R.S. Haltiwanger, The O-linked fucose glycosylation pathway: identification and characterization of a uridine diphosphoglucose: fucose-β1,3-glucosyltransferase activity from Chinese hamster ovary cells. Glycobiology 9(7), 679–687 (1999)

    Article  CAS  PubMed  Google Scholar 

  78. L.K. Mahal, K.J. Yarema, C.R. Bertozzi, Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276(5315), 1125 (1997)

    Article  CAS  PubMed  Google Scholar 

  79. E. Saxon, C.R. Bertozzi, Cell surface engineering by a modified staudinger reaction. Science 287(5460), 2007 (2000)

    Article  CAS  PubMed  Google Scholar 

  80. Y. Iwasaki, E. Tabata, K. Kurita, K. Akiyoshi, Selective cell attachment to a biomimetic polymer surface through the recognition of cell-surface tags. Bioconjug. Chem. 16(3), 567–575 (2005)

    Article  CAS  PubMed  Google Scholar 

  81. M.G. Paulick, M.B. Forstner, J.T. Groves, C.R. Bertozzi, A chemical approach to unraveling the biological function of the glycosylphosphatidylinositol anchor. Proc. Natl. Acad. Sci. 104(51), 20332–20337 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. D. Rabuka, M.B. Forstner, J.T. Groves, C.R. Bertozzi, Noncovalent cell surface engineering: incorporation of bioactive synthetic glycopolymers into cellular membranes. J. Am. Chem. Soc. 130(18), 5947–5953 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. S. Bi, S. Yue, S. Zhang, Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem. Soc. Rev. 46, 4281–4298 (2017)

    Article  CAS  PubMed  Google Scholar 

  84. J. Couet, J.D.J.S. Samuel, A. Kopyshev, S. Santer, M. Biesalski, Peptide–polymer hybrid nanotubes. Angew. Chem. Int. Ed. 44(21), 3297–3301 (2005)

    Article  CAS  Google Scholar 

  85. J.O. Zoppe, Y. Habibi, O.J. Rojas, R.A. Venditti, L.-S. Johansson, K. Efimenko, M. Österberg, J. Laine, Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 11(10), 2683–2691 (2010)

    Article  CAS  PubMed  Google Scholar 

  86. D. Bontempo, H.D. Maynard, Streptavidin as a macroinitiator for polymerization: in situ protein−polymer conjugate formation. J. Am. Chem. Soc. 127(18), 6508–6509 (2005)

    Article  CAS  PubMed  Google Scholar 

  87. I. Cobo, M. Li, B.S. Sumerlin, S. Perrier, Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nat. Mater. 14(2), 143–159 (2015)

    Article  CAS  PubMed  Google Scholar 

  88. J. Niu, D.J. Lunn, A. Pusuluri, J.I. Yoo, M.A. O'Malley, S. Mitragotri, H.T. Soh, C.J. Hawker, Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nat. Chem. 9(6), 537–545 (2017)

    Article  CAS  PubMed  Google Scholar 

  89. J.Y. Kim, B.S. Lee, J. Choi, B.J. Kim, J.Y. Choi, S.M. Kang, S.H. Yang, I.S. Choi, Cytocompatible polymer grafting from individual living cells by atom-transfer radical polymerization. Angew. Chem. Int. Ed. 55(49), 15306–15309 (2016)

    Article  CAS  Google Scholar 

  90. I. Drachuk, M.K. Gupta, V.V. Tsukruk, Biomimetic coatings to control cellular function through cell surface engineering. Adv FunMater 23(36), 4437–4453 (2013)

    CAS  Google Scholar 

  91. R.F. Fakhrullin, Y.M. Lvov, “Face-Lifting” and “make-up” for microorganisms: layer-by-layer polyelectrolyte nanocoating. ACS Nano 6(6), 4557–4564 (2012)

    Article  CAS  PubMed  Google Scholar 

  92. A.J. Bradley, S.T. Test, K.L. Murad, J. Mitsuyoshi, M.D. Scott, Interactions of IgM ABO antibodies and complement with methoxy-PEG-modified human RBCs. Transfusion 41(10), 1225–1233 (2001)

    Article  CAS  PubMed  Google Scholar 

  93. R. Chapanian, D.H. Kwan, I. Constantinescu, F.A. Shaikh, N.A.A. Rossi, S.G. Withers, J.N. Kizhakkedathu, Enhancement of biological reactions on cell surfaces via macromolecular crowding. Nat. Commun. 5, 4683 (2014)

    Article  CAS  PubMed  Google Scholar 

  94. N.A.A. Rossi, I. Constantinescu, D.E. Brooks, M.D. Scott, J.N. Kizhakkedathu, Enhanced cell surface polymer grafting in concentrated and nonreactive aqueous polymer solutions. J. Am. Chem. Soc. 132, 3423–3430 (2010)

    Article  CAS  PubMed  Google Scholar 

  95. V.R. Muzykantov, Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Del 7(4), 403–427 (2010)

    Article  CAS  Google Scholar 

  96. M.D. Scott, A.M. Chen, Beyond the red cell: pegylation of other blood cells and tissues. Transfus. Clin. Biol. 11(1), 40–46 (2004)

    Article  PubMed  Google Scholar 

  97. V.L. Leung, J.N. Kizhakkedathu, The mechanism and modulation of complement activation on polymer grafted cells. Acta Biomater. 31, 252–263 (2016)

    Article  CAS  PubMed  Google Scholar 

  98. N.A.A. Rossi, I. Constantinescu, R.K. Kainthan, D.E. Brooks, M.D. Scott, J.N. Kizhakkedathu, Red blood cell membrane grafting of multi-functional hyperbranched polyglycerols. Biomaterials 31, 4167–4178 (2010)

    Article  CAS  PubMed  Google Scholar 

  99. B. Afzali, R.I. Lechler, M.P. Hernandez-Fuentes, Allorecognition and the alloresponse: clinical implications. Tissue Antigens 69(6), 545–556 (2007)

    Article  CAS  PubMed  Google Scholar 

  100. R. Snanoudj, C. Frangié, B. Deroure, H. François, C. Créput, S. Beaudreuil, A. Dürrbach, B. Charpentier, The blockade of T-cell co-stimulation as a therapeutic stratagem for immunosuppression: focus on belatacept. Biol. Targets Ther. 1(3), 203–213 (2007)

    CAS  Google Scholar 

  101. K.L. Murad, E.J. Gosselin, J.W. Eaton, M.D. Scott, Stealth cells: prevention of major histocompatibility complex class ii-mediated t-cell activation by cell surface modification. Blood 94(6), 2135 (1999)

    CAS  PubMed  Google Scholar 

  102. A.M. Chen, M.D. Scott, Comparative analysis of polymer and linker chemistries on the efficacy of immunocamouflage of murine leukocytes. Artif. Cells Blood Substit. Biotechnol. 34(3), 305–322 (2006)

    Article  CAS  Google Scholar 

  103. D. Wang, W.M. Toyofuku, A.M. Chen, M.D. Scott, Induction of immunotolerance via mPEG grafting to allogeneic leukocytes. Biomaterials 32(35), 9494–9503 (2011)

    Article  CAS  PubMed  Google Scholar 

  104. D.L. Kyluik-Price, M.D. Scott, Effects of methoxypoly (ethylene glycol) mediated immunocamouflage on leukocyte surface marker detection, cell conjugation, activation and alloproliferation. Biomaterials 74, 167–177 (2016)

    Article  CAS  PubMed  Google Scholar 

  105. N. Kang, W.M. Toyofuku, X. Yang, M.D. Scott, Inhibition of allogeneic cytotoxic T cell (CD8+) proliferation via polymer-induced Treg (CD4+) cells. Acta Biomater 57, 146–155 (2017). S1742-7061(17)30263-5

    Article  CAS  PubMed  Google Scholar 

  106. T. Maerz, R. Mu, K.C. Baker, Cell and scaffold surface engineering to enhance cell migration and tissue regeneration. Surf. Innov. 2(1), 17–25 (2014)

    Article  CAS  Google Scholar 

  107. D. Sarkar, P.K. Vemula, G.S.L. Teo, D. Spelke, R. Karnik, L.Y. Wee, J.M. Karp, Chemical engineering of mesenchymal stem cells to induce a cell rolling response. Bioconjug. Chem. 19(11), 2105–2109 (2008)

    Article  CAS  PubMed  Google Scholar 

  108. K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5), 861–872 (2007)

    Article  CAS  PubMed  Google Scholar 

  109. K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4), 663–676 (2006)

    Article  CAS  PubMed  Google Scholar 

  110. O. Levy, W. Zhao, L.J. Mortensen, S. Leblanc, K. Tsang, M. Fu, J.A. Phillips, V. Sagar, P. Anandakumaran, J. Ngai, C.H. Cui, P. Eimon, M. Angel, C.P. Lin, M.F. Yanik, J.M. Karp, mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood 122(14), e23–e32 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. W.L. Murphy, T.C. McDevitt, A.J. Engler, Materials as stem cell regulators. Nat. Mater. 13(6), 547–557 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. A. Pulsipher, M.E. Griffin, S.E. Stone, L.C. Hsieh-Wilson, Long-lived engineering of glycans to direct stem cell fate. Angew. Chem. Int. Ed. 54(5), 1466–1470 (2015)

    Article  CAS  Google Scholar 

  113. M.T. Stephan, J.J. Moon, S.H. Um, A. Bershteyn, D.J. Irvine, Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16(9), 1035–1041 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. M.L. Huang, R.A. Smith, G.W. Trieger, K. Godula, Glycocalyx remodeling with proteoglycan mimetics promotes neural specification in embryonic stem cells. J. Am. Chem. Soc. 136(30), 10565–10568 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. K. Golab, S. Kizilel, T. Bal, M. Hara, M. Zielinski, R. Grose, O. Savari, X.J. Wang, L.J. Wang, M. Tibudan, A. Krzystyniak, N. Marek-Trzonkowska, J.M. Millis, P. Trzonkowski, P. Witkowski, Improved coating of pancreatic islets with regulatory t cells to create local immunosuppression by using the biotin-polyethylene glycol-succinimidyl valeric acid ester molecule. Transplant. Proc. 46(6), 1967–1971 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. D. Vats, H. Wang, D. Esterhazy, K. Dikaiou, C. Danzer, M. Honer, F. Stuker, H. Matile, C. Migliorini, E. Fischer, J. Ripoll, R. Keist, W. Krek, R. Schibli, M. Stoffel, M. Rudin, Multimodal imaging of pancreatic beta cells in vivo by targeting transmembrane protein 27 (TMEM27). Diabetologia 55(9), 2407–2416 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. E.S. Yolcu, H. Zhao, L. Bandura-Morgan, C. Lacelle, K.B. Woodward, N. Askenasy, H. Shirwan, Pancreatic islets engineered with SA-FasL protein establish robust localized tolerance by inducing regulatory T cells in mice. J. Immunol. 187(11), 5901–5909 (2011)

    Article  CAS  PubMed  Google Scholar 

  118. S. Cabric, T. Eich, J. Sanchez, B. Nilsson, O. Korsgren, R. Larsson, A new method for incorporating functional heparin onto the surface of islets of langerhans. Tissue Eng. Part C Methods 14(2), 141–147 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. N. Takemoto, Y. Teramura, H. Iwata, Immobilization of sertoli cells on islets of langerhans. Biomater. Sci. 1(3), 315–321 (2013)

    Article  CAS  PubMed  Google Scholar 

  120. G.A. Zimmerman, T.M. McIntyre, M. Mehra, S.M. Prescott, Endothelial cell-associated platelet-activating factor: a novel mechanism for signaling intercellular adhesion. J. Cell Biol. 110(2), 529–540 (1990)

    Article  CAS  PubMed  Google Scholar 

  121. V.D. Bhat, G.A. Truskey, W.M. Reichert, Using avidin-mediated binding to enhance initial endothelial cell attachment and spreading. J. Biomed. Mater. Res. Part A 40(1), 57–65 (1998)

    Article  CAS  Google Scholar 

  122. I.K. Ko, T.J. Kean, J.E. Dennis, Targeting mesenchymal stem cells to activated endothelial cells. Biomaterials 30(22), 3702–3710 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. T.E. Deglau, J.D. Johnson, F.S. Villanueva, W.R. Wagner, Targeting microspheres and cells to polyethylene glycol-modified biological surfaces. J. Biomed. Mater. Res. Part A 81A(3), 578–585 (2007)

    Article  CAS  Google Scholar 

  124. T.E. Deglau, T.M. Maul, F.S. Villanueva, W.R. Wagner, In vivo PEG modification of vascular surfaces for targeted delivery. J. Vasc. Surg. 55(4), 1087–1095 (2012)

    Article  PubMed  Google Scholar 

  125. K.-H. Park, Arg-Gly-Asp (RGD) sequence conjugated in a synthetic copolymer bearing a sugar moiety for improved culture of parenchymal cells (hepatocytes). Biotechnol. Lett. 24(17), 1401–1406 (2002)

    Article  CAS  Google Scholar 

  126. N. Kojima, T. Matsuo, Y. Sakai, Rapid hepatic cell attachment onto biodegradable polymer surfaces without toxicity using an avidin–biotin binding system. Biomaterials 27(28), 4904–4910 (2006)

    Article  CAS  PubMed  Google Scholar 

  127. D.H. Kwan, I. Constantinescu, R. Chapanian, M.A. Higgins, M.P. Kotzler, E. Samain, A.B.. Boraston, J.N. Kizhakkedathu, S.G. Withers, Toward efficient enzymes for the generation of universal blood through structure-guided directed evolution. J. Am. Chem. Soc. 137(17), 5695–5705 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding by the Canadian Institutes of Health Research (CIHR) and from the Natural Sciences and Engineering Research Council (NSERC) of Canada to JNK. JNK holds a Career Investigator Scholar award from the Michael Smith Foundation for Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayachandran N. Kizhakkedathu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abbina, S., Mohtaram, N.K., Kizhakkedathu, J.N. (2018). Cell Surface Engineering. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92066-5_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92066-5_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92066-5

  • Online ISBN: 978-3-319-92066-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics